XXLJOB:超长定时任务慢节点优化实践

简介: 本文针对XXLJOB中超长定时任务的慢节点问题,通过定位耗时卡点、解决数据倾斜与计算堆积,结合视图落表、前置裁剪、分布式MapJoin等优化手段,显著提升任务执行效率,产出时间提前4小时以上,并降低回刷成本,提升系统稳定性与可维护性。

XXLJOB:超长定时任务慢节点优化实践

一、背景


二、快速止血
2.1、耗时卡点定位
先来看看这个让人头疼的慢节点,长什么样子 ?让我看看你是何方神圣 。


告辞告辞......
从DAG图怕是很难看出问题,还是先按照latency对各个节点做降序排列,看看到底是在什么地方耗时最多。


几个join任务都是时长杀手,动辄半小时以上。
接下来点进几个耗时top的join任务,有两个发现:
1、或多或少都有数据倾斜现象。


2、多个非倾斜节点运行时间也比较长(30min~1h不等)。
到此为止,我们可以给出初步结论:任务运行耗时过长,是数据倾斜 + join任务资源不足两个原因共同导致的。
2.2、快速止血方案
1、针对join任务资源不足:
提高join任务的资源分配
2、针对数据倾斜:
因为宽表代码中,主表是流量/成交/ipv等事实详单数据,join的右表都是标签类维表(主键唯一),所以可以判断倾斜一定是发生在左表上。对左表的关联key进行汇总统计。


按照用户id做汇总统计
倾斜热点主要是由空值带来的,这种情况比较好处理,直接对空值加随机值打散就好。
在完成这两步简单快速止血操作后,重跑任务可以发现,运行时间可以节省1h以上,已经初见成效了。但是只做到这些是远远不够的,想进一步提高产出效率,需要更深入地剖析代码,梳理可优化点。
三、代码结构梳理
3.1、主干链路梳理
想从DAG图里梳理清楚数据加工链路,已经是不现实的了,只能回到SQL代码里,看看实现了哪些逻辑,再来寻找切入点。我们忽略掉代码中关于指标加工/格式转化/字段拼接等部分,只看数据表的结构加工和数据流向,大概可以梳理出这样一条主干链路。


宽表任务主干链路
梳理清楚加工链路之后,可以看出来该任务整体上可以划分成两部分:
1、多张事实表的合并(union all),包括流量表/成交表/IPV表/互动点赞表等每日的活跃日志数据等。
2、合并后的事实表作为主表,依次关联(left join)不同维度的标签表,例如用户维表/商品维表/内容维表等。
3.2、存在问题
梳理完代码主干链路之后,可以看出来加工逻辑并不复杂,其实就是做了详单事实表和多张维度标签表的汇总拼接,产出一张字段较全的大宽表。接下来简单分析一下这个任务里存在哪些问题。
1、计算堆积
首先造成任务产出较晚的最直接的原因,就是计算堆积。该节点引用了不少外部空间视图,并且这些视图不是简单的 “select * from xxx;” 形式的的简单语句,而是包含了多张表进行join的逻辑。这就导致了,虽然视图相关的上游表早早就产出了,但视图DDL内包含的计算任务,却落到了该节点上,造成该节点计算量的堆积。
类似地,部分子查询中多表join的计算,也是同理。
2、数据倾斜
在定位耗时卡点的时候我们已经发现了空值带来的倾斜问题,并且做了加盐打散的方法来快速止血。但事实上,分析了多个日期分区的数据发现,除了空值以外,偶尔还会出现部分热点用户/热点主播/热点内容带来的数据倾斜(更要命的是,这些热点值每天都不相同)。虽然倾斜程度不如空值带来的影响严重,但仍然对计算任务造成了一定阻塞。
3、回刷成本高昂
除了上面两个比较明显的问题以外,我们翻看该节点的历史发布记录,可以发现140多个发布版本,有至少一半以上的变更内容是和埋点参数解析相关的。针对埋点解析正确性的验证,往往需要补数据回刷确认,单一节点动辄6、7个小时的回刷成本,给数据验证也带来了不小的麻烦。
四、优化方案
明确了任务中存在的问题,我们的优化目标就非常清晰了:
1、提早产出:越早越好
2、回刷方便:越快越好
3、节省资源:越少越好
4.1、视图落表&节点拆分
优化的第一步,也是最简单的一步,就是将节点中涉及到的视图进行物化落表,并让我们的慢节点任务,从调用视图变成调用实体表。这一步的操作主要是为了缓解计算堆积的问题,让一部分可以提前进行的计算,尽早进行调度,不必等到大宽表所有的上游依赖都产出之后再开始。


直接引用视图:视图中的计算逻辑堆积到大宽表任务中,增加了运行时间(绿色:上游任务;蓝色:大宽表慢任务)。


视图落表:视图中的计算逻辑提前算好,缓解大宽表节点的计算压力
类似地,我们也可以对部分子查询中的逻辑进行封装落表,拆分成多个节点的方式来把计算压力分散,提早进行调度。这样不仅减轻了大宽表节点的计算压力,也让logview中的DAG图更加清晰明了,方便针对性地进行优化和调参。

4.2、前置裁剪
第二步就是解决数据倾斜的问题。对于非空值的数据倾斜,比较通用的做法有两种:mapjoin和skewjoin。
先说skewjoin,我们这种热点变动的场景(每日流量不一定有热点,热点数量和热点值也不确定),没办法准确指定热点key值,贸然使用skewjoin的话,每日动态获取重复行数top的热值计算,会产生额外资源和时间消耗,收益性价比并不高。
接下来考虑mapjoin。如果join的右表比较小,可以放到内存中,那么使用mapjoin无疑是最优的,这样可以避免大表数据的全量shuffle(在我们这个场景里,左表有几十亿行,TB量级的数据,shuffle成本还是比较高昂的),大幅提升join效率。但是很不幸,我们这里join的右表都不是省油的灯,数据量远超mapjoin能容纳的内存上限(维表行数在几亿~百亿之间不等),直接mapjoin是行不通的。
直接mapjoin走不通并不代表无计可施,通过count distinct 左表的关联key数量,我们发现虽然作为右表的标签维表数据量非常庞大,但最后关联上左表的部分只有非常小的占比(1%~5%)。


全量标签表B中只有一小部分B'实际关联到了左表A
因此,我们优化的方向就是尽量避免无用部分(B-B')参与计算。这种情况我们可以采取两次mapjoin的方式,先对数据行进行前置裁剪后,再完成join关联。
裁剪后的右表数据量大大减少,部分维表此时已经可以满足mapjoin的使用条件了。这时候使用mapjoin关联回主表,自然能解决数据倾斜的问题,同时运行效率大幅提升。
相比直接的Join来说,虽然这种方案增加了计算当日活跃key的步骤(group by),但是通过两次mapjoin规避掉了右表数据中 B-B' 部分的全量排序过程,节省了Disk IO耗时,从而大大提高了join效率。

4.3、中表关联
虽然通过前置裁剪大幅缩减了join右表的数据量,但是并不是所有的右表通过裁剪之后都能放到mapjoin里,像用户标签/内容标签/粉丝标签这些维表,缩减后仍然有几千万行(几十G)的数据量,使用普通join直接关联,耗时仍然较高。
关于较大表之间的join优化,我们可以考虑采用分桶的方案,按照关联key对数据分桶后再来join。但是在这个场景里,需要关联的右表较多,并且关联key都不相同,分桶聚簇键不好设置,分桶join带来的性能提升收益并不明显。
万幸,我们发现ODPS的Distributed Mapjoin可以完美解决我们的困境。我们左表(几十亿行数据,TB量级)远大于需要关联的右表(几千万行数据,百GB左右),符合Distributed Mapjoin使用场景。所以我们对于裁剪后无法使用mapjoin的维表,改为使用distmapjoin来关联。
使用distmapjoin时,有两个参数需要配置:shard_count和replica_count,官方文档中已经有比较明确的推荐参数计算方式了:
Shard
即分片。小表数据分片到各个计算节点处理。shard_count过大会导致client端读取的时候访问过多的server,性能和稳定性受影响;shard_count过小,会导致单个worker内存使用过多报错。
在当前版本中,shard_count值建议手动指定。shard_count值可以根据小表数据量来大致估算。预估一个shard处理的数据量范围是[200M, 500M]。shard_count值最好取质数,简单也可以取奇数。
未来我们会支持shard count的自动计算和调整。
Replica
副本数。为了减少访问压力以及避免单个worker失效导致整个任务失败,同一个shard的数据,可以有多个副本。默认为1,当client端并发过多,或者环境不稳定导致server端频繁重启,可以适当提高replica_count为2或者3。
shard和replica共同决定service端的并发度:并发度 = shard_count * replica_count。
而从我们的节点多次测试对比下来,replica_count设置为2,shard_count设置为:小于 [ 中表mapper输出数据大小 / 200M ] 的最大质数,能够取得兼顾性能与稳定性的较优效果。
4.4、最终优化方案
经过了上面三步优化,我们基本解决了数据关联耗时较长的问题,产出时效有了比较明显的提升,同时也规避掉了部分冗余无用的计算,节约了计算资源。但是做到这样就够了么?回想我们当初想解决的三个问题:计算堆积、数据倾斜、回刷成本高昂。
对没错,针对回刷成本高昂的问题,我们不妨顺手也解决掉,把宽表节点拆分成两部分:关联维表进行标签补全的部分(中间临时表)、埋点解析&字段格式处理的部分(叶子结点)。这样拆分之后,在数据结构没有较大调整的情况下,未来新增埋点参数解析类的需求,只需要变更回刷相对简单的叶子结点即可,无需回刷join关联的部分,从而减少了回刷成本。


优化后的整体数据加工链路
五、效果对比


优化方案上线后,宽表产出时间从下午一点左右,提早到了早上八点半左右,节省4h+。
六、总结

复杂odps任务,就像在书包里沉睡了一周的耳机线,想优化就需要耐心找到耗时较长的卡点并一一解决。但更重要的是,从设计开发之初就应该尽量避免在单任务中写耦合度较高的代码,尽量保持单个任务的简单明了,这样不仅能保证代码的运行效率,也能提升代码可读性,降低运维成本。

3 人点赞

3


相关文章
|
20小时前
|
运维 NoSQL 测试技术
Redis:内存陡增100%深度复盘
本文复盘了Redis内存陡增100%的故障:因大Key调用导致带宽耗尽,引发缓冲区(输入/输出)内存激增,最终占满实例内存,虽淘汰策略存在但仍导致服务不可用。根因是缓冲区内存被撑爆,而非数据本身。建议优化Key设计、监控缓冲区及合理配置。
Redis:内存陡增100%深度复盘
|
20小时前
|
消息中间件 监控 Java
RocketMQ:底层Netty频繁OS OOM
本文分析了一起RocketMQ应用因Netty频繁申请堆外内存导致OS OOM的问题。根本原因是多个ClassLoader加载了多个PooledByteBufAllocator实例,各自独立占用堆外内存,突破JVM的MaxDirectMemorySize限制。结合Arthas、NMT等工具深入排查,最终定位到rocketmq-client实例占用近1G堆外内存。建议短期调小Java堆以腾出空间,长期优化Netty内存使用与类加载机制。
 RocketMQ:底层Netty频繁OS OOM
|
12天前
|
弹性计算 缓存 运维
阿里云服务器ECS和其他云服务器对比,有哪些特点和优势?
阿里云ECS实例规格丰富,支持多种计算架构,覆盖全场景应用。具备弹性伸缩、分钟级扩容、高可用性与99.995% SLA保障,提供多重安全防护及灵活计费方式,助力企业降本增效,是稳定可靠、简单易用的首选云服务器。
134 41
|
6天前
|
人工智能 前端开发 Unix
从CLI原理出发,如何做好AI Coding
本文探讨CLI类AI编程工具的产品美学与技术原理,分析其遵循Unix哲学的轻量、可组合、可集成特性,解析Single Agent架构与上下文工程的实践,并分享如何通过Prompt优化、任务拆解与团队对齐,高效利用CLI提升编码效率,展望AI时代人机协作的新范式。
从CLI原理出发,如何做好AI Coding
|
11天前
|
人工智能 程序员 图形学
第一章 AI 编程革命的第一步:让 Cursor 真正“听懂”你要做一款游戏
第一章 AI 编程革命的第一步:让 Cursor 真正“听懂”你要做一款游戏
76 5
第一章 AI 编程革命的第一步:让 Cursor 真正“听懂”你要做一款游戏
|
11天前
|
人工智能 自然语言处理 机器人
AI也会"三思而后答"?揭秘Self-RAG智能检索术
遇到AI胡说八道怎么办?Self-RAG就像给AI装了个"思考开关",让它知道什么时候该查资料、什么时候该独立思考,还能自我评估答案靠不靠谱。6步智能决策机制,让AI回答又准又稳!#人工智能 #RAG技术 #智能检索 #AI应用
102 11
|
5天前
|
存储 弹性计算 数据管理
阿里云OSS收费标准:流量费用、存储费及功能费价格表(详细计费规则)
阿里云OSS收费标准涵盖存储、流量及功能费用,支持按量付费与资源包两种模式。标准存储按量0.09元/GB/月,40GB包年9元,100GB包年99元,500GB预留空间118.99元/年。流量仅公网流出收费,闲时0.25元/GB,忙时0.5元/GB,可购流量包抵扣。开通Bucket免费,上传不收费,下载按流量计费。多种存储类型满足不同需求,成本透明灵活。
|
7天前
|
弹性计算 固态存储 关系型数据库
国内高性价比云服务器选型指南:阿里云低价机型配置与市场对比
今年,阿里云针对不同用户群体推出多款高性价比云服务器产品,覆盖轻量应用服务器与 ECS 实例,价格区间从 38 元 / 年至 160 元 / 月,适配个人开发、中小企业轻量业务等多种场景,具体核心机型信息如下:
|
26天前
|
存储 缓存 应用服务中间件
Nginx缓存清除方法(手把手教你轻松清理Nginx缓存)
本文来源https://www.vps5.cn/介绍Nginx缓存清除的常用方法,包括删除缓存文件、使用ngx_cache_purge模块及设置过期时间,帮助开发者高效管理缓存,提升网站性能。