构建AI智能体:四十四、线性回归遇见大模型:从数学原理到智能实战
本文系统介绍了线性回归的原理、实现和应用。线性回归通过建立自变量(X)与因变量(Y)之间的线性关系(Y=wX+b)进行预测,核心方法包括最小二乘法(精确解析解)和梯度下降法(迭代数值解)。文章结合Python代码示例,演示了从简单线性回归到多元线性回归的实现过程,并分析了大模型时代线性回归的新应用场景。同时指出了线性回归的局限性(如对异常值敏感)和扩展方向(多项式回归、正则化等)。通过Qwen等大模型的辅助,可以快速生成高质量代码并深入分析回归结果,使这一基础方法在复杂数据中发挥更大价值。