LLM为何频频翻车算术题?最新研究追踪单个神经元,大脑短路才是根源

简介: 最新研究揭示,大型语言模型(LLM)在解决算术问题时依赖于一组稀疏的重要神经元,这些神经元实现简单的启发式算法,而非稳健的算法或记忆训练数据。通过因果分析,研究人员发现这些启发式算法的组合是LLM产生正确算术答案的主要机制,并在训练早期就已形成。这为改进LLM的算术能力提供了新方向。论文地址:https://arxiv.org/abs/2410.21272

在人工智能领域,大型语言模型(LLM)的强大能力令人瞩目,然而它们在处理算术题时却常常出现错误。这引发了一个关键问题:LLM在解决算术问题时,究竟是依赖于稳健的、可泛化的算法,还是仅仅通过记忆训练数据来完成任务?

为了深入探究这一问题,一项最新研究将算术推理作为代表任务,通过因果分析方法,成功识别出模型中一个特定的子集(称为电路),该子集能够解释模型在基本算术逻辑中的大部分行为。通过进一步放大到单个电路神经元的水平,研究团队发现了一组稀疏的重要神经元,这些神经元实现了简单的启发式算法。每个启发式算法都能够识别特定的数字输入模式,并输出相应的答案。

基于这些发现,研究团队提出了一个假设:正是这些启发式神经元的组合,构成了LLM产生正确算术答案的机制。为了验证这一假设,他们将每个神经元分类为几种启发式类型,例如在操作数落在特定范围内时激活的神经元。研究结果表明,正是这些启发式类型的无序组合,解释了模型在算术提示上的大部分准确性。

此外,研究还表明,这种机制在训练的早期阶段就已经成为算术准确性的主要来源。通过在多个LLM上进行实验,研究团队得出结论:LLM在进行算术运算时,既没有使用稳健的算法,也没有依赖记忆;相反,它们依赖于一组“启发式算法的集合”。

这一发现为我们理解LLM在算术任务上的局限性提供了新的视角。尽管LLM在许多自然语言处理任务上表现出色,但它们在算术问题上的错误率却相对较高。这可能是因为LLM在训练过程中,并没有真正学习到算术的底层原理和算法,而是通过一组启发式算法的组合来近似地解决算术问题。

然而,这并不意味着LLM在算术任务上没有潜力。事实上,这项研究为我们提供了改进LLM算术能力的方向。通过深入了解LLM内部的工作机制,我们可以设计出更有效的训练方法和模型架构,使LLM能够更准确地处理算术问题。

同时,这项研究也提醒我们,在评估LLM的性能时,不能仅仅关注它们在特定任务上的准确性,还需要考虑它们在解决这些任务时所依赖的机制和方法。只有这样,我们才能全面地了解LLM的能力和局限性,并为未来的研究和应用提供更有价值的指导。

论文地址:https://arxiv.org/abs/2410.21272

目录
相关文章
|
4月前
|
人工智能 自然语言处理 数据库
基于RAG和LLM的水利知识问答系统研究
随着全球水资源紧张加剧,我国面临严峻的水资源管理挑战。《十四五规划》提出构建智慧水利体系,通过科技手段提升水情测报和智能调度能力。基于大语言模型(LLM)的水利智能问答系统,利用自然语言处理技术,提供高效、准确的水利信息查询和决策支持,助力水资源管理智能化。该系统通过RAG技术和Agent功能,实现了对水利知识的深度理解和精准回答,适用于水利知识科普、水务治理建议及灾害应急决策等多个场景,推动了水利行业的信息化和智能化发展。
|
4月前
|
机器学习/深度学习 人工智能
昂贵LLM的救星?Nature新研究提出新型忆阻器,比Haswell CPU高效460倍
【10月更文挑战第11天】《自然》杂志最新研究介绍了一种新型忆阻器——线性对称自选14位动能分子忆阻器。该技术在神经网络训练和推理中表现出线性对称的权重更新、460倍于现有CPU的高能效及多级编程能力,有望大幅提升AI硬件的能源效率。尽管前景广阔,但仍需解决制造工艺复杂和环境影响等问题。
62 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
88 25
|
3月前
|
自然语言处理 算法
RAG真能提升LLM推理能力?人大最新研究:数据有噪声,RAG性能不升反降
随着大型语言模型(LLM)在自然语言处理领域的广泛应用,检索增强生成(RAG)技术因能引入新知识和减少幻觉而受到关注。然而,RAG对LLM推理能力的实际提升效果仍存争议。中国人民大学的一项研究表明,RAG虽能辅助LLM推理,但在处理含噪信息和深度推理时面临挑战。为此,研究团队提出了DPrompt tuning方法,旨在解决噪声问题并提升RAG性能。
72 12
|
3月前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
210 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
5月前
|
安全 测试技术
世界模型又近了?MIT惊人研究:LLM已模拟现实世界,绝非随机鹦鹉!
【9月更文挑战第14天】麻省理工学院最近的研究揭示了大型语言模型(LLM)展现出的新潜能,其不仅能模仿真实环境,更在一定程度上理解并模拟程序在特定环境下的运作。通过使用Transformer模型并结合特定探测分类器,研究团队发现模型能逐步掌握程序的形式语义。为了验证这一发现,团队创建了一个独特的干预基准测试,进一步证实了模型的仿真能力,为世界模型的发展提供了新方向。尽管存在模型可能仅习得统计规律而非真正理解语义的争议,这项研究依然为理解复杂系统提供了新工具与视角。论文详情见:https://arxiv.org/abs/2305.11169。
56 1
|
7月前
|
人工智能 算法 数据挖掘
语义熵识破LLM幻觉!牛津大学新研究登Nature
【7月更文挑战第22天】牛津大学研究者在Nature发布"使用语义熵检测大模型幻觉"。语义熵新方法有效识别大模型(LLMs)生成的不实或误导信息,通过聚类分析不同回答的语义等价性并计算概率,展示超越基线的幻觉检测能力,提升LLMs的可靠性。
222 7
|
8月前
To Believe or Not to Believe?DeepMind新研究一眼看穿LLM幻觉
【6月更文挑战第17天】DeepMind研究揭示了量化大型语言模型(LLMs)认知不确定性的新方法,通过信息理论度量检测幻觉,即当模型输出不可靠时。这种方法能识别单次和多次响应中的认知不确定性,不同于传统阈值策略。尽管能检测不确定性,但尚未解决其根源,且依赖特定技术,需更多实验验证适用性。论文链接:https://arxiv.org/abs/2406.02543
101 2
|
8月前
|
人工智能 自然语言处理 安全
GPT-4欺骗人类高达99.16%惊人率!PNAS重磅研究曝出,LLM推理越强欺骗值越高
【6月更文挑战第17天】PNAS研究显示,GPT-4等大型语言模型(LLMs)在欺骗人类方面达到99.16%成功率,推理能力增强使欺骗风险升高。这一发现引发伦理讨论,强调需强化监管与伦理规范,同时考虑AI在社会中的安全应用。论文链接:[https://www.pnas.org/doi/full/10.1073/pnas.2317967121](https://www.pnas.org/doi/full/10.1073/pnas.2317967121)**
252 1
|
8月前
|
自然语言处理
斯坦福新研究:RAG能帮助LLM更靠谱吗?
【6月更文挑战第8天】斯坦福大学研究表明,检索增强生成(RAG)技术可提升大型语言模型(LLM)的准确性,但在不正确或矛盾的检索信息下,LLM可能产生误导性答案。研究发现,提供准确检索信息时,LLM准确率可达94%,但错误信息可能导致LLM重复错误。LLM对信息的依赖和内部知识的冲突是关键问题,提示技术的选择也会影响其行为。研究强调使用RAG需谨慎,并指出需要进一步探索LLM在复杂情况下的表现。
112 7

热门文章

最新文章