负载均衡算法

简介: 负载均衡算法

随机

调用关系如上图(简化了公网->防火墙处理),适合场景:所有服务器性能基本一致,且无超阈值流量。

private K doSelect(List<K> nodes, String ip) {
    // 在列表中随机选取一个节点
    int index = random.nextInt(nodes.size());
    return nodes.get(index);
}

如果存在部分机器性能更优,此时可以在随机基础上增加权重,升级为:随机权重算法。

private K doSelect(List<K> nodes, String ip) {
    int length = nodes.size();
    AtomicInteger totalWeight = new AtomicInteger(0);
    for (K node : nodes) {
        Integer weight = node.getWeight();
        totalWeight.getAndAdd(weight);
    }
    if (totalWeight.get() > 0) {
        int offset = random.nextInt(totalWeight.get());
        for (N node : nodes) {
            // 让随机值 offset 减去当前node权重值
            offset -= node.getWeight();
            if (offset < 0) {
                // 当前node大于随机值offset,返回此Node
                return node;
            }
        }
    }
    // 随机返回
    return nodes.get(random.nextInt(length));
}

轮询

轮询不再是在多台服务器随机挑选,而是按照顺序一个个排队调用,调用完再插入队尾等待下一次调用

protected K doSelect(List<K> nodes, String ip) {
    int length = nodes.size();
    // 如果位置值已经等于长度重置为0(走一轮了)
    position.compareAndSet(length, 0);
    N node = nodes.get(position.get());
    // 数据原子增加,对应调用从1->2->3->4
    position.getAndIncrement();
    return node;
}

同加权随机,轮询也同样存在加权轮询的场景,此时流量调度将发生如下变化:

此处逻辑相对复杂,笔者在此说出主要思路,后续有时间补充伪代码,感兴趣的可以参照Dubbo的实现

如上有服务器servers=[A,B],对应权重weights=[3,1],总权重为4。我们可以理解为有4台服务器,3台A,1台B,一次调用过来的时候,需要按顺序访问。如有5次调用,调用顺序为AAABA。

选举思路如下:

次数

WeightedRoundRobin

选择结果

选择后的WeightedRoundRobin

1

3、1

A

2、1

2

2、1

A

1、1

3

1、1

A

0、1

4

0、1

B

0、0(等于0-0时复原成:3、1)

5

3、1

A

2、1

最小活跃数

指:将当前请求转发到连接数/请求数最少的机器上,其特点是根据服务器实时运行状态动态分配,保障服务负载不会过饱和。如下图当请求4过来时,Nginx判断目前服务器1连接数>服务器2,故4会请求到服务器2上:

源地址哈希

根据请求源IP哈希计算得到一个数值,用该数值在候选服务器列表的进行取模运算,得到的结果便是选中的服务器,此操作可以保证固定IP的请求总是到某一台服务器上,伪代码如下:

private K doSelect(List<K> nodes, String ip) {
    int length = nodes.size();
    int index = hash(ip) % length;
    return nodes.get(index);
}

一致性哈希

相同的请求尽可能落到同一个服务器上。一致性哈希解决稳定性问题,可以将所有的存储节点排列在首尾相接的 Hash 环上,每个 key 在计算 Hash 后会 顺时针找到临接的存储节点存放。而当有节点加入或退出时,仅影响该节点在 Hash环上顺时针相邻的后续节点。

相关文章
|
2月前
|
负载均衡 算法 Java
Spring Cloud全解析:负载均衡算法
本文介绍了负载均衡的两种方式:集中式负载均衡和进程内负载均衡,以及常见的负载均衡算法,包括轮询、随机、源地址哈希、加权轮询、加权随机和最小连接数等方法,帮助读者更好地理解和应用负载均衡技术。
|
15天前
|
负载均衡 算法 搜索推荐
Nginx 常用的负载均衡算法
【10月更文挑战第17天】在实际应用中,我们需要根据具体的情况来选择合适的负载均衡算法。同时,还可以结合其他的优化措施,如服务器健康检查、动态调整权重等,来进一步提高负载均衡的效果和系统的稳定性。
107 59
|
3月前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
8天前
|
负载均衡 算法 应用服务中间件
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
|
7天前
|
负载均衡 算法
SLB-Backend的负载均衡算法
【10月更文挑战第19天】
22 5
|
11天前
|
负载均衡 算法 应用服务中间件
Nginx 常用的负载均衡算法
【10月更文挑战第22天】不同的负载均衡算法各有特点和适用场景。在实际应用中,需要根据具体的业务需求、服务器性能和网络环境等因素来选择合适的算法。
20 3
|
25天前
|
缓存 负载均衡 算法
nginx学习:配置文件详解,负载均衡三种算法学习,上接nginx实操篇
Nginx 是一款高性能的 HTTP 和反向代理服务器,也是一个通用的 TCP/UDP 代理服务器,以及一个邮件代理服务器和通用的 HTTP 缓存服务器。
51 0
nginx学习:配置文件详解,负载均衡三种算法学习,上接nginx实操篇
|
1月前
|
负载均衡 监控 算法
每个程序员都应该知道的 6 种负载均衡算法
每个程序员都应该知道的 6 种负载均衡算法
74 2
|
3月前
|
负载均衡 监控 算法
揭秘负载均衡的五大算法秘籍:让你的服务器轻松应对亿万流量,不再崩溃!
【8月更文挑战第31天】在互联网快速发展的今天,高可用性和可扩展性成为企业关注的重点。负载均衡作为关键技术,通过高效分配网络流量提升系统处理能力。本文介绍了轮询、加权轮询、最少连接及IP哈希等常见负载均衡算法及其应用场景,并提供Nginx配置示例。此外,还探讨了如何根据业务需求选择合适算法、配置服务器权重、实现高可用方案、监控性能及定期维护等最佳实践,助力系统优化与用户体验提升。
65 2
|
3月前
|
存储 负载均衡 算法
负载均衡算法
本文介绍了几种常见的负载均衡策略及其应用场景
负载均衡算法