阿里云百炼已上线超强推理开源模型QwQ-32B,尺寸更小,性能比肩DeepSeek满血版

简介: 通义千问团队推出了320亿参数的QwQ-32B模型,通过大规模强化学习和多阶段训练,在数学、编程及通用能力上达到或超越了DeepSeek-R1等先进模型。QwQ-32B模型已在阿里云百炼上线,支持API调用,用户可通过官方文档了解详细使用方法。未来,团队将继续探索智能体与RL集成,推动人工通用智能的发展。

最近的研究表明,强化学习可以显着提高模型的推理能力。例如,DeepSeek-R1通过整合冷启动数据和多阶段训练,实现了最先进的性能,使其能够进行深度思考和复杂推理。


这一次,主要探讨了大规模强化学习(RL)对大语言模型的智能提升作用,同时推出了我们最新的推理模型 QwQ-32B。这是一款拥有 320 亿参数的模型,其性能可与配备 6710 亿参数(其中 370 亿被激活)的 DeepSeek-R1 媲美。


这一成果突显了将强化学习评估经过大规模预训练的强大基础模型的有效性。此外,通义千问团队仍在推理模型中集成了与智能体相关的能力,可以在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。


希望我们的一点努力能够证明强大的基础模型大规模强化学习也许是一条通向通用人工智能的实用之路。

QwQ-32B模型详情

基于 Qwen2.5-32B 模型训练的 QwQ 推理模型,通过强化学习大幅度提升了模型推理能力。模型数学代码等核心指标(AIME 24/25、LiveCodeBench)以及部分通用指标(IFEval、LiveBench等)达到DeepSeek-R1 满血版水平,各指标均显著超过同样基于 Qwen2.5-32B 的 DeepSeek-R1-Distill-Qwen-32B。目前已在阿里云百炼上线,可以直接通过api进行调用。使用方法可参考:深度思考(QwQ)文档。

模型规格:

模型名称

上下文长度

最大输入

最大思维链长度

最大回复长度

输入成本

输出成本

免费额度

(注)

(Token数)

(每千Token)

qwq-32b

131,072

98,304

32,768

8,192

目前仅供免费体验。

免费额度用完后不可调用,敬请关注后续动态。

100万 Token

有效期:阿里云百炼开通后180天内


QwQ-32B 模型效果

QwQ-32B 在一系列基准测试中进行了评估,测试了数学推理、编程能力和通用能力。以下结果展示了 QwQ-32B 与领先其他模型的性能对比,包括 DeepSeek-R1-Distilled-Qwen-32B、DeepSeek-R1-Distilled-Llama-70B、o1-mini 以及原始的 DeepSeek-R1。

image.png

在数学能力的 AIME24 体育集上,以及评估代码能力的 LiveCodeBench 中,千问 QwQ-32B 测试表现与 DeepSeek-R1 相当,远胜于 o1-mini 及相同尺寸的 R1 后续模型;由 Meta 首席科学家杨立昆领衔的“最难 LLMs 体育排行榜” LiveBench、谷歌等提出的指令遵循能力IFEval体育集、由加州大学伯克利分校等提出的评估调用函数或工具方面的BFCL测试中,千问QwQ-32B的得分均超越了DeepSeek- R1。

系统强化学习

通义千问团队在冷启动的基础上开展了大规模的强化训练。在初始阶段,特别针对数学和编程任务进行了强化学习。与依赖传统的奖励模型(奖励模型)不同,通过生成答案的正确性来为数学问题提供反馈,并通过代码执行服务器评估生成的代码成功,通过测试来提供代码是否提供反馈。


通义千问团队发现在强化学习扩展过程中,随着训练轮次的推进,这两个领域中的性能均表现出持续的提升。


在第一阶段的强化学习之后,增加了另一个针对通用能力的强化学习。该阶段使用通用奖励模型和基于一些规则的验证器进行训练。发现,通过少量步骤的通用强化学习,可以提升其他通用能力,同时在数学和编程任务上的性能没有显着下降。

通过API使用QwQ-32B

下面展示了一段简短的示例代码,说明如何通过 API 使用 QwQ-32B。


from openai import OpenAI
import os

# Initialize OpenAI client
client = OpenAI(
    # If the environment variable is not configured, replace with your API Key: api_key="sk-xxx"
    # How to get an API Key:https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"
)

reasoning_content = ""
content = ""

is_answering = False

completion = client.chat.completions.create(
    model="qwq-32b",
    messages=[
        {"role": "user", "content": "Which is larger, 9.9 or 9.11?"}
    ],
    stream=True,
    # Uncomment the following line to return token usage in the last chunk
    # stream_options={
    #     "include_usage": True
    # }
)

print("\n" + "=" * 20 + "reasoning content" + "=" * 20 + "\n")

for chunk in completion:
    # If chunk.choices is empty, print usage
    if not chunk.choices:
        print("\nUsage:")
        print(chunk.usage)
    else:
        delta = chunk.choices[0].delta
        # Print reasoning content
        if hasattr(delta, 'reasoning_content') and delta.reasoning_content is not None:
            print(delta.reasoning_content, end='', flush=True)
            reasoning_content += delta.reasoning_content
        else:
            if delta.content != "" and is_answering is False:
                print("\n" + "=" * 20 + "content" + "=" * 20 + "\n")
                is_answering = True
            # Print content
            print(delta.content, end='', flush=True)
            content += delta.content

未来

这是Qwen在大规模强化强化学习(RL)以增强推理能力方面的第一步。通过这个旅程,不仅见证了扩展强化学习的巨大潜力,还认识了预训练语言模型中尚未开发的可能性。

在致力于开发下一代Qwen的过程中,通义千问团队将更强大的基础模型与依托规模化计算资源的RL相结合,将更加接近实现人工通用智能(AGI)。此外,通义千问团队正在积极探索将智能体与RL集成,以实现长时推理,目标是通过推理时间扩展来释放期待的智能。


🚀需要了解阿里云百炼可点击以下链接:

👉阿里云百炼详情了解可点击此官网链接:阿里云百炼官网介绍

👉阿里云百炼控制台页面可点击此链接直接进入阿里云百炼控制台




相关文章
|
3月前
|
分布式计算 测试技术 Spark
科大讯飞开源星火化学大模型、文生音效模型
近期,科大讯飞在魔搭社区(ModelScope)和Gitcode上开源两款模型:讯飞星火化学大模型Spark Chemistry-X1-13B、讯飞文生音频模型AudioFly,助力前沿化学技术研究,以及声音生成技术和应用的探索。
325 2
|
3月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1616 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
2月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
304 120
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
665 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
3月前
|
自然语言处理 机器人 图形学
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
腾讯混元图像3.0,真的来了——开源,免费开放使用。 正式介绍一下:混元图像3.0(HunyuanImage 3.0),是首个工业级原生多模态生图模型,参数规模80B,也是目前测评效果最好、参数量最大的开源生图模型,效果可对…
845 2
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
|
2月前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
609 2
|
3月前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
483 2
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
|
2月前
|
存储 机器学习/深度学习 人工智能
54_模型优化:大模型的压缩与量化
随着大型语言模型(LLM)的快速发展,模型规模呈指数级增长,从最初的数亿参数到如今的数千亿甚至万亿参数。这种规模扩张带来了惊人的能源消耗和训练成本,同时也给部署和推理带来了巨大挑战。2025年,大模型的"瘦身"已成为行业发展的必然趋势。本文将深入剖析大模型压缩与量化的核心技术、最新进展及工程实践,探讨如何通过创新技术让大模型在保持高性能的同时实现轻量化部署,为企业和开发者提供全面的技术指导。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
38_多模态模型:CLIP的视觉-语言对齐_深度解析
想象一下,当你看到一张小狗在草地上奔跑的图片时,你的大脑立刻就能将视觉信息与"小狗"、"草地"、"奔跑"等概念联系起来。这种跨模态的理解能力对于人类来说似乎是理所当然的,但对于人工智能系统而言,实现这种能力却经历了长期的技术挑战。多模态学习的出现,标志着AI从单一模态处理向更接近人类认知方式的综合信息处理迈出了关键一步。

相关产品

  • 大模型服务平台百炼