Jetson TX2 初体验

简介: # 0. 简介 Jetson TX2【1】是基于 NVIDIA Pascal™ 架构的 AI 单模块超级计算机,性能强大(1 TFLOPS),外形小巧,节能高效(7.5W),非常适合机器人、无人机、智能摄像机和便携医疗设备等智能终端设备。

0. 简介

Jetson TX2【1】是基于 NVIDIA Pascal™ 架构的 AI 单模块超级计算机,性能强大(1 TFLOPS),外形小巧,节能高效(7.5W),非常适合机器人、无人机、智能摄像机和便携医疗设备等智能终端设备。
Jatson TX2 与 TX1 相比,内存和 eMMC 提高了一倍,CUDA 架构升级为 Pascal,每瓦性能提高一倍,支持 Jetson TX1 模块的所有功能,支持更大、更深、更复杂的深度神经网络。
image.png

TX2 内部结构如下:
image.png

1. 开箱

过程细节不展开,板卡上电后来张照片:
image.png

2. 刷机

TX2 出厂时,已经自带了 Ubuntu 16.04 系统,可以直接启动。但一般我们会选择刷机,目的是更新到最新的 JetPack L4T,并自动安装最新的驱动、CUDA Toolkit、cuDNN、TensorRT。

刷机注意以下几点:

  • Host 需要安装 Ubuntu 14.04,至少预留 15 GB 硬盘空间,不要用 root 用户运行 JetPack-${VERSION}.run,我用的是 JetPack-L4T-3.1-linux-x64.run
  • TX2 需要进入 Recovery Mode,参考随卡自带的说明书步骤
  • 刷机时间大概需要 1~2 小时,会格式化 eMMC,主要备份数据

3. 运行视频目标检测 Demo

刷机成功后,重启 TX2,连接键盘鼠标显示器,就可以跑 Demo 了。

nvidia@tegra-ubuntu:~/tegra_multimedia_api/samples/backend$ ./backend 1 ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264 --trt-deployfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.prototxt --trt-modelfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.caffemodel --trt-forcefp32 0 --trt-proc-interval 1 -fps 10

视频截图如下:
image.png

4. 运行 TensorRT Benchmark

TensorRT 【3】是 Nvidia GPU 上的深度学习 inference 优化库,可以将训练好的模型通过优化器生成 inference 引擎
image.png

将 TX2 设置为 MAXP (最高性能)模式,运行 TensorRT 加速的 GoogLeNet、VGG16 得到处理性能如下:
image.png
image.png

5. TX2 不支持的 feature

  • 不支持 int8
  • 待发现

参考文献

【1】嵌入式系统开发者套件和模块 | NVIDIA Jetson | NVIDIA
【2】[Download and Install JetPack L4T]
【3】TensorRT

附录

deviceQuery

nvidia@tegra-ubuntu:~/work/TensorRT/tmp/usr/src/tensorrt$ cd /usr/local/cuda/samples/1_Utilities/deviceQuery
nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ls
deviceQuery  deviceQuery.cpp  deviceQuery.o  Makefile  NsightEclipse.xml  readme.txt
nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery
./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA Tegra X2"
  CUDA Driver Version / Runtime Version          8.0 / 8.0
  CUDA Capability Major/Minor version number:    6.2
  Total amount of global memory:                 7851 MBytes (8232062976 bytes)
  ( 2) Multiprocessors, (128) CUDA Cores/MP:     256 CUDA Cores
  GPU Max Clock rate:                            1301 MHz (1.30 GHz)
  Memory Clock rate:                             1600 Mhz
  Memory Bus Width:                              128-bit
  L2 Cache Size:                                 524288 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 32768
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            Yes
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 0 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = NVIDIA Tegra X2
Result = PASS

内存带宽测试

nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/bandwidthTest$ ./bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...

 Device 0: NVIDIA Tegra X2
 Quick Mode

 Host to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)    Bandwidth(MB/s)
   33554432            20215.8

 Device to Host Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)    Bandwidth(MB/s)
   33554432            20182.2

 Device to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)    Bandwidth(MB/s)
   33554432            35742.8

Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

GEMM 测试

nvidia@tegra-ubuntu:/usr/local/cuda/samples/7_CUDALibraries/batchCUBLAS$ ./batchCUBLAS -m1024 -n1024 -k1024
batchCUBLAS Starting...

GPU Device 0: "NVIDIA Tegra X2" with compute capability 6.2


 ==== Running single kernels ====

Testing sgemm
#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbf800000, -1) beta= (0x40000000, 2)
#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.00372291 sec  GFLOPS=576.83
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0x0000000000000000, 0) beta= (0x0000000000000000, 0)
#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.10940003 sec  GFLOPS=19.6296
@@@@ dgemm test OK

 ==== Running N=10 without streams ====

Testing sgemm
#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbf800000, -1) beta= (0x00000000, 0)
#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.03462315 sec  GFLOPS=620.245
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)
#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 1.09212208 sec  GFLOPS=19.6634
@@@@ dgemm test OK

 ==== Running N=10 with streams ====

Testing sgemm
#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0x40000000, 2) beta= (0x40000000, 2)
#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.03504515 sec  GFLOPS=612.776
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)
#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 1.09177494 sec  GFLOPS=19.6697
@@@@ dgemm test OK

 ==== Running N=10 batched ====

Testing sgemm
#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0x3f800000, 1) beta= (0xbf800000, -1)
#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 0.03766394 sec  GFLOPS=570.17
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=1024 n=1024 k=1024  alpha = (0xbff0000000000000, -1) beta= (0x4000000000000000, 2)
#### args: lda=1024 ldb=1024 ldc=1024
^^^^ elapsed = 1.09389901 sec  GFLOPS=19.6315
@@@@ dgemm test OK

Test Summary
0 error(s)
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
3月前
|
Ubuntu 开发工具 虚拟化
Jetson 学习笔记(十六):使用SDK Manager烧录Jetson Nano
这篇博客介绍了如何使用Nvidia SDK Manager烧录Jetson Nano。首先,需要在Ubuntu系统中安装VMware虚拟机和Nvidia SDK Manager。然后,通过连接Jetson Nano并进行一系列设置,包括FC_REC脚接GND,连接HDMI、鼠标键盘和电源线。在Ubuntu上通过lsusb确认设备连接后,使用SDK Manager进行烧录,选择Manual Setup-Jetson Nano,设置用户名和密码,然后点击flash完成安装。完成后,可以断开连接并启动Jetson Nano,进入Ubuntu安装界面。
274 2
Jetson 学习笔记(十六):使用SDK Manager烧录Jetson Nano
|
5月前
|
存储 并行计算 Ubuntu
Nvidia Jetson Orin系列配置教程
本文是Nvidia Jetson Orin系列的配置教程,介绍了两种安装方法:通过Nvidia SDK Manager进行安装和通过本地镜像烧录进行安装。第一种方法包括下载SDK Manager、安装和使用工具进行Jetson系列硬件的配置。第二种方法包括下载官方镜像、使用Etcher烧录镜像、安装镜像、安装开发环境以及检查开发环境是否配置成功。文中还提供了CUDA、cuDNN、TensorRT和OpenCV的检查命令和预期结果。
726 0
Nvidia Jetson Orin系列配置教程
|
7月前
|
传感器 机器人 开发者
NVIDIA Jetson TX1,TX2,TX2 NX,AGX Xavier 和 Nano开发板GPIO口配置及应用
NVIDIA Jetson TX1,TX2,TX2 NX,AGX Xavier 和 Nano开发板GPIO口配置及应用
|
8月前
|
芯片
MTK平台驱动调试指南 GPIO设置篇
MTK平台驱动调试指南 GPIO设置篇
515 1
|
8月前
|
网络安全
远程连接TX1开发板
远程连接TX1开发板
|
IDE 开发工具 数据安全/隐私保护
esp32CAM环境安装教程---串口驱动安装
esp32CAM环境安装教程---串口驱动安装
1261 0
|
Java Shell 开发工具
Jetson TX2 NX安装遇到的问题汇总
Jetson TX2 NX安装遇到的问题汇总
|
IDE 安全 物联网
快速入门 .NET nanoFramework 开发 ESP32-Pico 应用
本文是一篇适合初学者的 .NET nanoFramework 保姆级入门教程,并提供了基本的入门程序并介绍了微雪的 ESP32-S2-Pico 使用 .NET nanoFramework 开发过程的基础知识。
677 0
快速入门 .NET nanoFramework 开发 ESP32-Pico 应用
|
IDE 开发工具
esp32环境安装教程---arduino IDE
esp32环境安装教程---arduino IDE
433 0
|
IDE 中间件 编译器
【NXP】LPC55S69开发环境搭建
【NXP】LPC55S69开发环境搭建
207 0

热门文章

最新文章