人工智能平台PAI产品使用合集之创建了实时特征视图,里面的数据是通过什么传入的

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:希望在向ai提问时自动扩大ai提问框,自动扩大的距离由用户来设,没问时缩小到无 提问框单大单小都鸡肋



参考答案:

您所描述的功能听起来像是对于某个特定的AI提问界面的用户体验改进。这样的功能通常需要通过界面设计以及前端开发来实现,而不是由AI本身来处理。

假如您是希望在一个网页或应用程序中实现这个功能,那么这会涉及到使用HTML, CSS, 和 JavaScript 等技术来控制提问框的大小和动态变化。基本步骤可能包括:

设计一个可调整大小的输入框UI元素。

使用JavaScript监听用户的交互行为(例如鼠标悬停、点击等)。

根据用户的动作触发CSS动画或直接修改输入框的尺寸属性来调整大小。

允许用户自定义扩大的距离,可能需要一个设置选项来保存用户偏好。

当用户没有与提问框交互时,可以通过定时器或者事件监听器将其恢复到原始大小或最小化状态。

总之,倘若您不是开发者而只是想要这个功能,您可能需要向负责该平台的团队或开发人员提出这个需求。他们会根据现有的架构和技术栈评估实现这个功能的可行性,并决定是否进行相应的更新。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/615012



问题二:在机器学习PAI创建了一个实时的特征视图后,里面的数据是通过这个“实时计算控制台”往里传入数据吗?

在机器学习PAI创建了一个实时的特征视图后,里面的数据是通过这个“实时计算控制台”往里传入数据吗?特征平台 结合 实时计算 这部分操作有没有最佳实践案例呀?



参考答案:

可以看这个:https://help.aliyun.com/zh/flink/developer-reference/tablestore-connector

flink 写入到 tablestore



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/614971



问题三:机器学习PAI这个组件没有了,什么原因?

机器学习PAI这个组件没有了?



参考答案:

目前是算法树中隐藏掉了,还在和算法作者确认原因,不过您画布中的这个算法还是可以使用的,可以右键克隆。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/614402



问题四:机器学习PAI Embedding提取后的向量,如何导入到polarDB4ai里面?

机器学习PAI Embedding提取后的向量,如何导入到polarDB4ai里面?



参考答案:

跨存储跨引擎同步数据,可以用dataworks的数据集成功能,https://help.aliyun.com/zh/dataworks/user-guide/supported-data-source-types-and-read-and-write-operations?spm=a2c4g.11186623.0.0.1a83467fn8o69Z 



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/614401



问题五:请问机器学习PAI启动完成后这个界面可以关闭吗?

请问机器学习PAI启动完成后这个界面可以关闭吗?



参考答案:

机器学习PAI启动完成后,是可以关闭界面的。

阿里云的人工智能平台PAI(Platform For AI)是一个云原生的服务,它支持从数据处理、模型训练到在线部署的整个机器学习流程。使用PAI时,您可以通过DSW交互式建模或Designer拖拽式可视化建模等方式来快速构建模型。一旦您的任务或者模型训练启动后,PAI会自动在云端运行这些任务,这时用户界面可以安全关闭,因为后台的计算和服务不会受到影响。

此外,关闭界面并不会影响正在运行的任务或模型训练过程,因为这些都是在云端进行的。您可以在需要的时候重新登录到PAI平台,查看任务状态或者进行其他操作。不过,如果您正在进行一些需要实时交互的操作,比如调整参数或者实时监控训练过程,那么建议保持界面开启。

综上所述,如果您已经启动了机器学习任务,并且不需要实时监控或调整,那么关闭界面是完全可以的。当您需要再次查看任务结果或者进行后续操作时,只需重新打开PAI平台即可。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/614400

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
13天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
26 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
16天前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
3月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
4月前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
504 3
|
2天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
17 4
|
11天前
|
机器学习/深度学习 人工智能 算法
阿里云人工智能平台图像视频特征提取
本文介绍了图像与视频特征提取技术在人工智能和计算机视觉中的应用,涵盖图像质量评分、人脸属性分析、年龄分析、图像多标签打标、图文视频动态分类打标、视频质量评分及视频分类打标。通过深度学习模型如CNN和RNN,这些技术能从海量数据中挖掘有价值信息,为图像分类、目标检测、视频推荐等场景提供支持,提升分析精度与效率。
75 9
|
10天前
|
存储 分布式计算 MaxCompute
使用PAI-FeatureStore管理风控应用中的特征
PAI-FeatureStore 是阿里云提供的特征管理平台,适用于风控应用中的离线和实时特征管理。通过MaxCompute定义和设计特征表,利用PAI-FeatureStore SDK进行数据摄取与预处理,并通过定时任务批量计算离线特征,同步至在线存储系统如FeatureDB或Hologres。对于实时特征,借助Flink等流处理引擎即时分析并写入在线存储,确保特征时效性。模型推理方面,支持EasyRec Processor和PAI-EAS推理服务,实现高效且灵活的风险控制特征管理,促进系统迭代优化。
36 6
|
23天前
|
数据采集 人工智能 智能设计
首个!阿里云人工智能平台率先通过国际标准认证
首个!阿里云人工智能平台率先通过国际标准认证
79 7
|
20天前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
2月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
203 4
AutoTrain:Hugging Face 开源的无代码模型训练平台

相关产品

  • 人工智能平台 PAI