redis 集群 (主从复制 哨兵模式 cluster)

简介: redis 集群 (主从复制 哨兵模式 cluster)

redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster,本文会讲解一下三种模式的工作方式,以及如何搭建cluster群集


●主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。

缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

●哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。

缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。

●集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

 

一     主从复制

(一)相关理论

1,主从复制定义

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

 

2,主从复制的作用

●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

 

3,主从复制架构图

4   sync 同步过程

rdb (完全备份的文件) 给从服务器

aof (增备) 给从服务器

5,主从复制流程

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。

(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。

(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。

(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

 

(二) 实验模拟

1, 实验环境

88 ,99 机器为 redis 从服务器     77 为redis 主服务器

均安装redis

2, 修改主 服务器77的配置文件

vim /etc/redis/6379.conf

代码如下:

bind 0.0.0.0            #70行,修改监听地址为0.0.0.0
daemonize yes           #137行,开启守护进程
logfile /var/log/redis_6379.log   #172行,指定日志文件目录
dir /var/lib/redis/6379       #264行,指定工作目录
appendonly yes            #700行,开启AOF持久化功能
 

再重启redis  /etc/init.d/redis_6379 restart

3,  修改从服务器88,99的配置文件

vim /etc/redis/6379.conf

代码如下:

bind 0.0.0.0            #70行,修改监听地址为0.0.0.0
daemonize yes           #137行,开启守护进程
logfile /var/log/redis_6379.log   #172行,指定日志文件目录
dir /var/lib/redis/6379       #264行,指定工作目录    
replicaof 192.168.10.23 6379        #288行,指定要同步的Master节点IP和端口
appendonly yes            #700行,开启AOF持久化功能

再重启redis  /etc/init.d/redis_6379 restart

4,   查看主从是否配置成功

方法1 查看主服务器的日志

tailf /var/log/redis_6379.log

方法2  也可以这么看 redis-cli info replication

可以看到两个从

5,  检测主从 复制效果

主  服务器设置新键

从服务器也能看的到

二    哨兵模式

(一)哨兵模式 相关理论

1,哨兵模式出现背景

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

 

2,哨兵的核心功能

在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3,哨兵模式原理

哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master并将所有slave连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。

 

4,哨兵模式的作用

●监控:哨兵会不断地检查主节点和从节点是否运作正常。

●自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

●通知(提醒):哨兵可以将故障转移的结果发送给客户端。

5,哨兵结构

哨兵结构由两部分组成,哨兵节点和数据节点:

●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。

●数据节点:主节点和从节点都是数据节点。

 

6,哨兵架构图

7,哨兵监控方式

7.1哨兵对主从复制集群进行监控

监控对象 :     所有redis 数据节点

7.2 哨兵与哨兵之间进行相互监控

监控的对象:  哨兵彼此

8,哨兵监控目的

8.1 哨兵与哨兵之间的监控目的

检测彼此的存活状态

8.2 哨兵监控所有的redis数据库的目的

为了实现故障自动故障切换

9  故障切换原理

①当master 挂掉,哨兵会及时发现,发现之后 进行投票机制,选举出一个新的master服务器 (一定是基数)

② 完成salve---》master的从向主进行切换

③ 完成其他的从服务器对新的master配置

10 故障转移机制

① 由哨兵节点定期监控发现主节点是否出现了故障

每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

② 当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

③ 由leader哨兵节点执行故障转移,过程如下:

●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;

●若原主节点恢复也变成从节点,并指向新的主节点;

●通知客户端主节点已经更换。

 

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

11,主节点选举

①过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。

②选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)

③选择复制偏移量最大,也就是复制最完整的从节点。

 

(二)   实验模拟

1, 实验环境

88 ,99 机器为 redis 从服务器     77 为redis 主服务器

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

 

2, 修改Redis 哨兵模式的配置文件(所有节点)

配置文件在这

vim /opt/redis-5.0.7/sentinel.conf

代码如下:

1. protected-mode no                #17行,关闭保护模式(取消注释)
2. 
3. port 26379                   #21行,Redis哨兵默认的监听端口
4. 
5. daemonize yes                  #26行,指定sentinel为后台启动
6. 
7. logfile "/var/log/sentinel.log"          #36行,指定日志存放路径
8. 
9. dir "/var/lib/redis/6379"            #65行,指定数据库存放路径
10. 
11. sentinel monitor mymaster 192.168.10.23 6379 2  #84行,修改 指定该哨兵节点监控192.168.10.23:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
12. 
13. sentinel down-after-milliseconds mymaster 30000 #113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
14. 
15. sentinel failover-timeout mymaster 180000   #146行,故障节点的最大超时时间为180000(180秒)

小技巧 修改完主服务器的配置文件后,可以scp 传给两个从服务器直接问覆盖

3, 启动哨兵模式

先启master,再启slave

 

1. cd /opt/redis-5.0.7/
2. #先去到sentinel.conf 所在目录
3. 
4. redis-sentinel sentinel.conf &
5. #redis-sentinel  是开启的命令    sentinel.conf是哨兵的配置文件  &是后台运行

4, 查看 哨兵状态

方法1 查看master 的哨兵日志  tailf /var/log/sentinel.log

方法2 redis-cli -p 26379 info sentinel

(三) 哨兵模式 故障模拟

1, 查看redis-server进程号

ps -ef | grep redis

2,杀死 Master 节点上redis-server的进程号

kill -9 2011

3, 查看结果

tailf /var/log/sentinel.log

查看主服务器上   哨兵的日志

4, 验证结果

此时88 服务器变为主     77(原本的主)救活了 会变成从   99仍然是从

先救活77 服务器:

88 服务器新增键:

77 服务器:

99 服务器:

 

三     总结

redis主从复制 是为了数据冗余和读写分离

在这两种模式中,有两种角色主节点(master)和从节点(slave),主节点负责处理写的操作,并将数据更改复制到一个或多个从节点。

这样我们的主节点负载减轻,从节点可以提供数据读取服务,实现读写分离,如果主节点停止服务,从节点之一可以立即接管主节点的角色,再继续提供服务

具体流程如下:

1、从节点启动成功连接主节点后,发送一个sync命令

2、主节点接受到sync的命令后开始在后台保存快照,同时,它也开始记录接收到rsnc后所有执行写的命令,快照完成后会将这个快照文件发送给从节点。

3、从节点收到快照文件之后开始载入,并持续接受主节点发送过来的新的写命令执行

总的来说 通过主从复制,redis 能够实现数据的备份(master 产生的数据能slave备份),负责均衡(读操作可以分摊到slave上去)和高可用(master宕机后,可以由slave进行故障切换)

redis  哨兵机制

哨兵是一个高可用的行解决方案 官方认可 默认模式

1、监控:redis 哨兵 会持续监控master和slave实例是否正常运行

2、通知:如某个redis实例有问题,哨兵可以通过API向管理员或者其他应用发信通知

3、自动故障转移:如果master节点不工作,哨兵会开始故障转移的过程,选择一个slave节点晋升为新的master,其他剩余slave的节点会被重新配置为信的master节点的slave

4、配置提供服务:客户端可以使用哨兵来查询被认证的master节点该master节点的目录所有的slave节点

redis 哨兵是一个用于管理多个reids服务的系统,它提供监控、通知、自动故障转移、配置提供服务的功能,以实现redis高可用性

redis cluster 集群

redis cluster 是一个分布式数据库解决方案,提供一组redis服务之间的网络接口

主要有几个功能:

1、数据分片:redis cluster 实现了就爱那个数据自动分片,每个节点都会保存一份数据

2、故障转移:若个某个节点发生故障,cluster会自动将其上的分片迁移个其他节点

3、高性能:由于数据分片和网络,redis cluster提供高性能的数据操作

4、高可能:如果单个节点挂掉了,那么redis cluster 内部会自动进行故障恢复

redis 集群 是一个提供高性能、高可用、数据分片、故障转移特性的分布式数据解决方案


相关文章
|
6月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
468 2
|
4月前
|
NoSQL Java 网络安全
SpringBoot启动时连接Redis报错:ERR This instance has cluster support disabled - 如何解决?
通过以上步骤一般可以解决由于配置不匹配造成的连接错误。在调试问题时,一定要确保服务端和客户端的Redis配置保持同步一致。这能够确保SpringBoot应用顺利连接到正确配置的Redis服务,无论是单机模式还是集群模式。
455 5
|
4月前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
633 5
|
10月前
|
存储 NoSQL 数据库
Redis 逻辑数据库与集群模式详解
Redis 是高性能内存键值数据库,广泛用于缓存与实时数据处理。本文深入解析 Redis 逻辑数据库与集群模式:逻辑数据库提供16个独立存储空间,适合小规模隔离;集群模式通过分布式架构支持高并发和大数据量,但仅支持 database 0。文章对比两者特性,讲解配置与实践注意事项,并探讨持久化及性能优化策略,助你根据需求选择最佳方案。
435 5
|
5月前
|
存储 监控 NoSQL
Redis高可用架构全解析:从主从复制到集群方案
Redis高可用确保服务持续稳定,避免单点故障导致数据丢失或业务中断。通过主从复制实现数据冗余,哨兵模式支持自动故障转移,Cluster集群则提供分布式数据分片与水平扩展,三者层层递进,保障读写分离、容灾切换与大规模数据存储,构建高性能、高可靠的Redis架构体系。
|
5月前
|
存储 负载均衡 NoSQL
Redis主从复制
在分布式系统中,为解决单点故障和提升性能,常采用Redis主从复制架构。通过将数据复制到多个从节点,实现读写分离、负载均衡及高可用性,同时支持多种拓扑结构以适应不同场景需求。
|
7月前
|
负载均衡 NoSQL Redis
【赵渝强老师】Redis的主从复制集群
Redis主从复制是指将一台Redis服务器的数据复制到其他Redis服务器,实现数据热备份、故障恢复、负载均衡及高可用架构的基础。主节点负责写操作,从节点同步数据并可提供读服务,提升并发处理能力。
222 5
|
6月前
|
存储 NoSQL 算法
Redis的集群架构与使用经验
本文介绍了Redis的集群架构与使用经验,包括主从复制、哨兵集群及Cluster分片集群的应用场景与实现原理。内容涵盖Redis主从同步机制、数据分片存储方式、事务支持及与Memcached的区别,并讨论了Redis内存用尽时的处理策略。适用于了解Redis高可用与性能优化方案。
|
10月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
11月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作