实时计算 Flink版产品使用合集之构建实时数据仓库时,如何操作在几分钟内一直变化的表

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink消费kafka数据时会自动解压缩数据,有没有什么配置,在拉取的时候不解压缩呢?


Flink消费kafka数据时会自动解压缩数据,有没有什么配置,在拉取的时候不解压缩呢?


参考回答:

Apache Flink 在从 Apache Kafka 消费数据时,确实会自动解压缩数据。这是因为 Flink 的 FlinkKafkaConsumer 类在内部使用了 Kafka 客户端的默认行为,该客户端会根据 Kafka topic 中的消息头部信息来决定是否需要解压。

如果你想让 Flink 在拉取 Kafka 数据时不进行解压缩,可以尝试以下方法:

  1. 设置消费者配置:通过调用 Properties 对象的 setProperty() 方法,将 enable.auto.commit 设置为 false。这将禁用自动提交 offset,从而防止 Flink 自动解压缩数据。
  2. 手动处理消息:在消费数据时,你可以自定义一个函数或过程,对原始字节数组进行操作,而不是依赖于 Flink 或 Kafka 客户端自动解压缩。

但是请注意,这些方法可能会导致 Flink 处理的数据不再是可读的格式,因为它们可能仍然是压缩的。你需要确保你的应用程序能够正确地处理和解析这些未解压的数据。

如果你的目标是减少 Flink 在处理数据时的解压缩开销,而你仍然希望在应用程序中使用解压缩后的数据,那么你应该考虑其他的优化策略,例如使用更高效的解压缩库、调整并行度或资源分配等。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573363


问题二:Flink 在任务执行前我也不知道这个任务需要多少的内存,这个有什么解决方法吗?


Flink on yarn任务在执行的时候数据量太大容易jobmanager或者taskmanager内存不足,然后容器直接被kill掉,在任务执行前我也不知道这个任务需要多少的内存,这个有什么解决方法吗?


参考回答:

先按集群资源算算 按cpu和内存配比给,然后报溢出了再加,从ck恢复就行


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573362


问题三:Flink都用哪个版本,哪个版本比较稳定?


Flink都用哪个版本,哪个版本比较稳定?


参考回答:

1.17 目前可上生产


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573361


问题四:Flink有做过实时数仓的吗?


Flink有做过实时数仓的吗?对于状态在几分钟内一直变化的表,这种表是怎么处理的


参考回答:

确实,Flink已被用于实现实时数仓的数据处理和服务。例如,Flink与Hologres结合的方案中,Flink将数据源写入Hologres形成ODS层,然后订阅ODS层的Binlog进行加工,形成DWD层再次写入Hologres。进一步地,Flink可以订阅DWD层的Binlog,通过计算形成DWS层,最后由Hologres对外提供应用查询


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573360


问题五:问一下,flink使用rockdb作为状态后端,开了增量检查点,可以直接关闭增量检查点吗?


问一下,flink使用rockdb作为状态后端,开了增量检查点,导致历史的checkpoint目录我不敢删除,可以直接关闭增量检查点吗?会出现问题吗?


参考回答:

可以关闭 Flink 中的增量检查点。在关闭增量检查点后,Flink 会在每次执行检查点时生成一个完整的状态快照,并将其存储到指定的位置。这样,你就可以安全地删除历史的 checkpoint 目录了。

要在 Flink 中关闭增量检查点,你可以按照以下步骤操作:

  1. 配置文件
  • 如果你在使用 flink-conf.yaml 配置文件,请确保设置 state.backend.rocksdb.incremental.checkpoints.enabled: false
  • 如果你正在使用 Flink SQL CLI 或 Table API,则需要在提交作业时设置相应的参数(例如通过 table.executeSql() 方法)。
  1. 重启任务
  • 修改配置后,你需要重新启动你的 Flink 任务,以便新配置生效。

关闭增量检查点可能会影响 Flink 的性能和资源消耗,因为完整状态快照通常比增量快照占用更多的空间和时间来创建。此外,如果你的任务有很高的状态更新频率,那么可能会导致频繁的全量检查点,这会增加 I/O 压力和网络开销。

但是,如果你不关心这些额外的开销,并且希望清理历史的 checkpoint 目录,那么关闭增量检查点是一个可行的选择。只要确保在关闭增量检查点之前已经有一个可用的全量检查点作为恢复点,以防止意外故障时无法从最近的检查点恢复。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573358

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
zdl
|
24天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
142 56
|
1月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
44 2
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
133 0
|
2月前
|
SQL 运维 数据管理
在对比其他Flink实时计算产品
在对比其他Flink实时计算产品
|
4月前
|
存储 SQL 关系型数据库
实时计算 Flink版产品使用问题之如何高效地将各分片存储并跟踪每个分片的消费位置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版产品使用问题之如何处理数据并记录每条数据的变更
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
资源调度 Java Scala
实时计算 Flink版产品使用问题之如何实现ZooKeeper抖动导致任务失败时,能从最近的检查点重新启动任务
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之同步时,上游批量删除大量数据(如20万条),如何提高删除效率
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 实时计算 Flink版