【AIGC】通过人工智能总结PDF文档摘要服务的构建

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 【5月更文挑战第9天】使用Python和预训练的AI模型,结合Gradio前端框架,创建了一个文本及PDF摘要聊天机器人。通过加载"FalconsAI/text_summarization"模型,实现文本和PDF的预处理,包括PDF合并与文本提取。聊天机器人接收用户输入,判断是文本还是PDF,然后进行相应的摘要生成。用户可以通过运行`app.py`启动机器人,访问`localhost:7860`与之交互,快速获取内容摘要。这个工具旨在帮助忙碌的人们高效获取信息。

[toc]


我们生活在一个快速发展的社会中,每个人都在奔跑!我们似乎总是没有时间阅读、了解自己和享受一些高质量的内容。在这种氛围中,我们只能希望有什么东西能帮上忙,而这个东西可以是人工智能。

构建聊天界面以汇总文本和 PDF,我们可以快速利用我们的 python 知识来实现和部署文本摘要聊天机器人,使用预训练的 AI 模型和前端框架 gradio。

1.实现模型加载

首先,我们在 python 脚本中导入pipeline,负责加载和调用 AI 模型:

from transformers import pipeline

model_checkpoint = "FalconsAI/text_summarization"
summarizer = pipeline("summarization", model=model_checkpoint)

我们选择了一个相对较小的模型。

2.定义预处理函数

如果它们被批量上传,则合并 pdf......

def merge_pdfs(pdfs: list):
    merger = PdfMerger()
    for pdf in pdfs:
        merger.append(pdf)
    merger.write(f"{pdfs[-1].split('.')[0]}_results.pdf")
    merger.close()
    return f"{pdfs[-1].split('.')[0]}_results.pdf"

将合并的 pdf 转换为大小合适的文本字符串:

def pdf2string(pdfpath):
    loader = PyPDFLoader(pdfpath)
    documents = loader.load()

    ### Split the documents into smaller chunks for processing
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
    texts = text_splitter.split_documents(documents)
    fulltext = ""
    for text in texts:
        fulltext += text.page_content+"\n\n\n"
    return fulltext

现在我们已经实现了预处理功能,让我们用 Gradio 设计我们的聊天机器人。

3.构建对话机器人

我们想要一个管理聊天记录的函数,将文本消息与pdf文档分开,代码如下:

def add_message(history, message):
    if len(message["files"]) > 0:
        history.append((message["files"], None))
    if message["text"] is not None and message["text"] != "":
       history.append((message["text"], None))
    return history, gr.MultimodalTextbox(value=None, interactive=False)

返回history包含如下内容:

  • 上传文件的路径元组(如下所示:“/path/to/file1.pdf”、“path/to/file2.pdf...”))和 None(表示来自聊天机器人的消息,尚未写入)
  • 包含我们消息的文本字符串(例如:“In this article, we will see why cats are so overwhelmingly cute...”)和None(代表来自聊天机器人的消息,尚未编写)

让我们看看如何使用历史记录来生成文本:

def bot(history):
    global histr
    if not history is None:
        if type(history[-1][0]) != tuple:
            text = history[-1][0]
            response = summarizer(text, max_length=int(len(text.split(" "))*0.5), min_length=int(len(text.split(" "))*0.05), do_sample=False)[0]
            response = response["summary_text"]
            history[-1][1] = ""
            for character in response:
                history[-1][1] += character
                time.sleep(0.05)
                yield history
        if type(history[-1][0]) == tuple:
            filelist = []
            for i in history[-1][0]:
                filelist.append(i)
            finalpdf = merge_pdfs(filelist)
            text = pdf2string(finalpdf)
            response = summarizer(text, max_length=int(len(text.split(" "))*0.5), min_length=int(len(text.split(" "))*0.05), do_sample=False)[0]
            response = response["summary_text"]
            history[-1][1] = ""
            for character in response:
                history[-1][1] += character
                time.sleep(0.05)
                yield history
    else:
        history = histr
        bot(history)

正如你所看到的,我们检查历史中最后一个元组的第一个元素(history[-1][0])是否是一个元组:

  • 如果它是一个元组,我们将所有 pdf 合并到其中,将它们转换为字符串,并将文本通过管道传递到摘要器,作为输出,返回一个文本,其中包含原始文档中少于 50% 但超过 5% 的单词
  • 如果是文本字符串,我们直接汇总该字符串。

我们将输出摘要流式传输为聊天机器人响应

现在构建多模态聊天机器人:

with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
        [[None, "Hi, I'm **ai-summarizer**, your personal summarization assistant"]],
        label="ai-summarizer",
        elem_id="chatbot",
        bubble_full_width=False,
    )

    chat_input = gr.MultimodalTextbox(interactive=True, file_types=["pdf"], placeholder="Enter message or upload file...", show_label=False)

    chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
    bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
    bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])

启动函数

demo.queue()

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", share=False)

执行app.py

python3 app.py

模型加载完毕之后,在 localhost:7860 上能够看到聊天机器人,现在我们的摘要助手正在工作了,我们可以通过它来总结我们的文档了!

小结

本节我们学习了基于AI对PDF文件学习汇总,希望对初学者有所帮助。

小编是一名热爱人工智能的专栏作者,致力于分享人工智能领域的最新知识、技术和趋势。这里,你将能够了解到人工智能的最新应用和创新,探讨人工智能对未来社会的影响,以及探索人工智能背后的科学原理和技术实现。欢迎大家点赞,评论,收藏,让我们一起探索人工智能的奥秘,共同见证科技的进步!

目录
相关文章
|
24天前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
23天前
|
API C#
在.NET中使用QuestPDF高效地生成PDF文档
在.NET中使用QuestPDF高效地生成PDF文档
|
2月前
|
人工智能 算法 安全
人工智能伦理与监管:构建负责任的AI未来
【10月更文挑战第3天】随着人工智能(AI)技术的快速发展,其在社会各领域的应用日益广泛。然而,AI的广泛应用也带来了一系列伦理和监管挑战。本文旨在探讨AI的伦理问题,分析现有的监管框架,并提出构建负责任AI未来的建议。同时,本文将提供代码示例,展示如何在实践中应用这些原则。
363 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AIGC的底层技术:人工智能通用计算架构
探索AIGC的底层技术:人工智能通用计算架构
152 3
|
3月前
|
人工智能 自然语言处理 前端开发
基于ChatGPT开发人工智能服务平台
### 简介 ChatGPT 初期作为问答机器人,现已拓展出多种功能,如模拟面试及智能客服等。模拟面试功能涵盖个性化问题生成、实时反馈等;智能客服则提供全天候支持、多渠道服务等功能。借助人工智能技术,这些应用能显著提升面试准备效果及客户服务效率。 ### 智能平台的使用价值 通过自动化流程,帮助用户提升面试准备效果及提高客户服务效率。 ### 实现思路 1. **需求功能设计**:提问与接收回复。 2. **技术架构设计**:搭建整体框架。 3. **技术选型**:示例采用 `Flask + Template + HTML/CSS`。 4. **技术实现**:前端界面与后端服务实现。
|
3月前
|
人工智能 运维 自然语言处理
AI战略丨构建未来: 生成式人工智能技术落地策略
GenAI 的技术落地需要企业进行周密地规划和持续地努力。企业必须从自身的战略出发, 综合考虑成本、效果和性能,制定合理的技术架构,通过全面的 AI 治理,实现可持续的创新和发展。
|
4月前
|
数据采集 人工智能 监控
构建未来:人工智能在城市规划中的应用与挑战
【8月更文挑战第6天】随着人工智能技术的飞速发展,其在各行各业的应用日益深入。本文将探讨人工智能在城市规划领域的应用及其所面临的挑战,分析AI技术如何助力城市发展更加智能、高效和可持续,同时指出在实施过程中需要注意的问题和潜在风险。通过对未来趋势的展望,本文旨在为城市规划者和决策者提供参考,促进人工智能技术在城市建设中的健康发展。
|
4月前
|
机器人 C# 人工智能
智能升级:WPF与人工智能的跨界合作——手把手教你集成聊天机器人,打造互动新体验与个性化服务
【8月更文挑战第31天】聊天机器人已成为现代应用的重要组成部分,提供即时响应、个性化服务及全天候支持。随着AI技术的发展,聊天机器人的功能日益强大,不仅能进行简单问答,还能实现复杂对话管理和情感分析。本文通过具体案例分析,展示了如何在WPF应用中集成聊天机器人,并通过示例代码详细说明其实现过程。使用Microsoft的Bot Framework可以轻松创建并配置聊天机器人,增强应用互动性和用户体验。首先,需在Bot Framework门户中创建机器人项目并编写逻辑。然后,在WPF应用中添加聊天界面,实现与机器人的交互。
119 0
|
4月前
|
C# 开发者 Windows
WPF与PDF文档:解锁创建和编辑PDF文件的新技能——从环境配置到代码实践,手把手教你如何在WPF应用中高效处理PDF,提升文档管理效率
【8月更文挑战第31天】随着数字文档的普及,PDF因跨平台兼容性和高保真度成为重要格式。WPF虽不直接支持PDF处理,但借助第三方库(如iTextSharp)可在WPF应用中实现PDF的创建与编辑。本文通过具体案例和示例代码,详细介绍了如何在WPF中集成PDF库,并展示了从设计用户界面到实现PDF创建与编辑的完整流程。不仅包括创建新文档的基本步骤,还涉及在现有PDF中添加页眉页脚等高级功能。通过这些示例,WPF开发者可以更好地掌握PDF处理技术,提升应用程序的功能性和实用性。
166 0
|
4月前
|
开发框架 前端开发 JavaScript
在Winform分页控件中集成导出PDF文档的功能
在Winform分页控件中集成导出PDF文档的功能

热门文章

最新文章