算法系列--动态规划--背包问题(1)--01背包介绍(下)

简介: 算法系列--动态规划--背包问题(1)--01背包介绍(下)

算法系列--动态规划--背包问题(1)--01背包介绍(上)

https://developer.aliyun.com/article/1480834?spm=a2c6h.13148508.setting.14.5f4e4f0eIqvzeb

💕"趁着年轻,做一些比较cool的事情"💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(1)–01背包介绍

大家好,今天为大家带来的是算法系列--动态规划--背包问题(1)--01背包介绍

状态转移方程

这里多了个限制条件dp[i - 1][j - v[i]] != -1,还是根据题目要求得来的,要考虑一种特殊情况,也就是在[0,i]区间内的物品根本无法组合成体积为j的情况(这也是会存在的),要想i位置存在价值,必须保证i-1位置刚好能够实现j-v[i]的体积

初始化相较于第一问也有所不同,具体来说需要把dp表的第一行初始化为-1(除了dp[0][0]),第一行代表不选择任何物品,也就无法构成满足j体积这个条件,我们将其设置为-1

之所以设置为-1是为了和dp[0][0] = 0这种情况作区分

代码:

import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    static int N = 1010;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), V = in.nextInt();// 获取物品数目和背包体积
        // 处理第一问
        int[] v = new int[N],w = new int[N];// 存储物品的体积和价值
        for(int i = 1; i <= n; i++) {// 输入数值
            v[i] = in.nextInt(); 
            w[i] = in.nextInt();
        }
        int[][] dp = new int[N][N];
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= V; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - v[i] >= 0) 
                    dp[i][j] = Math.max(dp[i - 1][j],dp[i - 1][j - v[i]] + w[i]);
            }
        }
        System.out.println(dp[n][V]);
        // 处理第二问
        dp = new int[N][N];
        for(int j = 1; j <= V; j++) {// 初始化
            dp[0][j] = -1;
        }
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= V; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - v[i] >= 0 && dp[i - 1][j - v[i]] != -1)
                    dp[i][j] = Math.max(dp[i - 1][j],dp[i - 1][j - v[i]] + w[i]);
            }
        }
        System.out.println(dp[n][V] == -1 ? 0 : dp[n][V]);
    }
}

上述解法的空间复杂度是很高的,我们开辟的dp表是一个N*N的,下面介绍使用滚动数组实现空间优化

空间优化之后的代码:

import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    static int N = 1010;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), V = in.nextInt();// 获取物品数目和背包体积
        // 处理第一问
        int[] v = new int[N],w = new int[N];// 存储物品的体积和价值
        for(int i = 1; i <= n; i++) {// 输入数值
            v[i] = in.nextInt(); 
            w[i] = in.nextInt();
        }
        int[] dp = new int[N];
        for(int i = 1; i <= n; i++) 
            for(int j = V; j >= v[i]; j--) 
                dp[j] = Math.max(dp[j],dp[j - v[i]] + w[i]);
            
        System.out.println(dp[V]);
        // 处理第二问
        dp = new int[N];
        for(int j = 1; j <= V; j++) 
            dp[j] = -1;// 初始化
        for(int i = 1; i <= n; i++) 
            for(int j = V; j >= v[i]; j--) 
                if(j - v[i] >= 0 && dp[j - v[i]] != -1)
                    dp[j] = Math.max(dp[j],dp[j - v[i]] + w[i]);
              
        System.out.println(dp[V] == -1 ? 0 : dp[V]);
    }
}

总结:本文的核心要点

  1. 什么是背包问题
  2. 01背包问题详解
  3. 背包问题的空间优化(滚动数组)

以上就是算法系列--动态规划--背包问题(1)--01背包介绍全部内容,下一篇文章将会带来01背包问题的拓展题目,敬请期待,我是LvZi


目录
相关文章
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
65 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
120 2
动态规划算法学习三:0-1背包问题
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
85 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
3月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
199 0
动态规划算法学习二:最长公共子序列
|
3月前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
200 0
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
6天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。

热门文章

最新文章