基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM

简介: 本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
正交幅度调制(QAM)是一种广泛应用于现代通信系统中的调制技术,其具有较高的频谱效率和抗噪声性能。随着通信技术的不断发展,对 QAM 调制信号的准确检测变得至关重要。传统的信号检测方法在复杂的通信环境下可能面临性能下降的问题。近年来,深度学习技术,特别是循环神经网络(RNN),在信号处理领域展现出了巨大的潜力。门控循环单元(GRU)网络作为一种改进的 RNN 结构,具有更高效的训练和更好的性能表现。

   QAM 是一种将幅度调制和相位调制相结合的调制方式。对于 M-QAM(M 为调制阶数,如 16QAM、32QAM、64QAM、128QAM 等),信号可以表示为:

3bc44d346fd40515c78b2bbc79b27670_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   GRU 是一种门控循环单元,它的主要目的是解决传统 RNN 在处理长序列数据时出现的梯度消失和梯度爆炸问题。GRU 由更新门和重置门组成。

277942ea52eab0eda9460bc24f8fd1af_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

GRU 的计算过程:

a6500526568c0c06b958d584c1fb1bc5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  基于 GRU 网络的 QAM 调制信号检测算法通过利用 GRU 的门控机制,能够有效地提取 QAM 调制信号的时间序列特征,实现对不同调制阶数(16QAM、32QAM、64QAM、128QAM)的准确检测。与 LSTM 相比,GRU 具有更少的参数和更快的训练速度,在一些情况下(snr较低时)能够取得与 LSTM 相当甚至更好的性能,而当SNR较高时,LSTM性能则优于GRU。在实际应用中,可以根据具体的需求和计算资源选择合适的网络结构。

3.MATLAB核心程序

Midxs     = [16,32,64,128];
YTest = categorical(YTest,[1 0],{'Y','N'});


False_detect  = zeros(length(YTest(1,:)),1); 
Miss_detect   = zeros(length(YTest(1,:)),1); 
Accuracy      = zeros(length(YTest(1,:)),1);
count1        = 0;
count2        = 0;
for ij=1:length(YTest(1,:))
    %调用模型进行预测识别
    temp = classify(net,XTest(:,ij));

    for n=1:length(temp)
        if YTest(n,ij) == 'Y'
            if temp(n) ~= YTest(n,ij)
                False_detect(ij) = False_detect(ij) + 1;
            end
            count1 = count1 + 1;
        end    
        if YTest(n,ij) == 'N'
            if temp(n) ~= YTest(n,ij)
                Miss_detect(ij) = Miss_detect(ij) + 1;
            end
            count2 = count2 + 1;
        end
    end
    False_detect(ij) = False_detect(ij)/count1;
    Miss_detect(ij)  = Miss_detect(ij)/count2;
    Accuracy(ij)     = 1 - sum(temp~=YTest(:,ij))/length(temp);
end

SNR = [-40 : 2 : 10];

% 绘制准确率图
if Midx == 16
    save R\gru_1.mat SNR Accuracy  Miss_detect False_detect
end
if Midx == 32
    save R\gru_2.mat SNR Accuracy  Miss_detect False_detect
end
if Midx == 64
    save R\gru_3.mat SNR Accuracy  Miss_detect False_detect
end
if Midx == 128
    save R\gru_4.mat SNR Accuracy  Miss_detect False_detect
end
end
相关文章
|
4月前
|
监控 安全 算法
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
|
5月前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
165 0
|
5月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
467 0
|
5月前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
685 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
4月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
276 4
|
4月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
429 5
|
4月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
5月前
|
存储 算法 安全
即时通讯安全篇(三):一文读懂常用加解密算法与网络通讯安全
作为开发者,也会经常遇到用户对数据安全的需求,当我们碰到了这些需求后如何解决,如何何种方式保证数据安全,哪种方式最有效,这些问题经常困惑着我们。52im社区本次着重整理了常见的通讯安全问题和加解密算法知识与即时通讯/IM开发同行们一起分享和学习。
442 9
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
385 2
|
4月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
229 0

热门文章

最新文章