基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM

简介: 本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a/matlab2024b

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

plot(gb1,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('优化迭代次数');
ylabel('适应度值');



figure
plot(gb1,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');



X     = g1;

%bilstm
layers=bilstm_layer(bw_in,round(X(1)),round(X(2)),bw_out,X(3),X(4),X(5));

%参数设定
opts = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',X(6), ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',2, ...   
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...           
    'SequenceLength',1,...
    'MiniBatchSize',64,...
    'Verbose',1);

%网络训练
[net1,INFO] = trainNetwork(Xtrain,Ytrain,layers,opts);

Rmsev = INFO.TrainingRMSE;


figure;
plot(Rmsev)
xlabel('训练次数');
ylabel('RMSE');


%预测
for i = 1:length(Xtest)
    Ypred(i)  = net1.predict(Xtest(i));
end

figure
plot(Ypred,'r-')
hold on 
plot(Ytest','b-')
legend('预测值','实际值')
xlabel('时间(s)')
ylabel('负荷(KW)')
rmse = mean((Ypred(:)-Ytest(:)).^2);% 计算均方根误差
title(sprintf('PSO-biLSTM分析-RMSE=%.3f', rmse));
save R3.mat Ypred Ytest rmse Rmsev

4.算法理论概述
在序列预测问题中,如气象数据预测、交通流量预测等,准确捕捉序列中的长期依赖关系和上下文信息是关键。双向长短期记忆网络(BiLSTM)能有效处理长序列数据,同时考虑序列的过去和未来信息,但BiLSTM的性能受其参数设置的影响较大。粒子群优化算法(PSO)是一种基于群体智能的优化算法,具有全局搜索能力强、收敛速度快等优点。将PSO应用于BiLSTM的参数优化,可以提高BiLSTM的序列预测性能。

   LSTM是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。

   BiLSTM 是在 LSTM 基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM 由一个前向 LSTM 和一个后向 LSTM 组成。

image.png

   这种结构使得 BiLSTM 能够同时利用序列的前文和后文信息,在处理需要全局信息的序列预测任务时具有明显优势。

   在本课题中,将pso应用于BiLSTM主要是为了优化BiLSTM的超参数,如学习率、隐藏层神经元数量等,以提升其预测性能。大致的步骤如下:

1.随机初始化一群粒子的位置和速度,每个粒子的位置对应一组 BiLSTM 的参数。

2.使用训练集对 BiLSTM 进行训练,并根据验证集的预测结果定义适应度函数。常见的适应度函数是均方误差(MSE):

image.png

    PSO能够在参数空间中进行全局搜索,有助于找到更优的BiLSTM参数组合,避免陷入局部最优解。
相关文章
|
5月前
|
算法 安全 BI
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
205 8
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
5月前
|
机器学习/深度学习 运维 算法
【储能选址定容】基于多目标粒子群算法的配电网储能选址定容(Matlab代码实现)
【储能选址定容】基于多目标粒子群算法的配电网储能选址定容(Matlab代码实现)
303 4
|
5月前
|
机器学习/深度学习 算法 机器人
基于自适应RBF神经网络滑模控制的机械臂轨迹跟踪仿真(Simulink仿真实现)
基于自适应RBF神经网络滑模控制的机械臂轨迹跟踪仿真(Simulink仿真实现)
351 4
|
5月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
5月前
|
机器学习/深度学习 运维 算法
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
402 0
|
5月前
|
机器学习/深度学习 传感器 算法
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
287 7
|
5月前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
116 0
|
5月前
|
数据采集 人工智能 算法
【有功-无功协调优化】基于改进多目标粒子群优化算法(小生境粒子群算法)的配电网有功-无功协调优化研究(Matlab代码实现)
【有功-无功协调优化】基于改进多目标粒子群优化算法(小生境粒子群算法)的配电网有功-无功协调优化研究(Matlab代码实现)
|
5月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
870 0

热门文章

最新文章