【数据挖掘】层次聚类DIANA、AGNES算法讲解及实战应用(图文解释 超详细)

简介: 【数据挖掘】层次聚类DIANA、AGNES算法讲解及实战应用(图文解释 超详细)

需要源码请点赞关注收藏后评论区留言私信~~~

算法原理

层次聚类 (Hierarchical Clustering)就是按照某种方法进行层次分类,直到满足某种条件为止。层次聚类主要分成两类

凝聚:从下到上。首先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有的对象都在一个簇中,或者满足某个终结条件

分裂:从上到下。首先将所有对象置于同一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终止条件

簇间距离度量

1. 最短距离法(最大相似度)

最短距离被定义为两个类中最靠近的两个对象间的距离为簇间距离

2.最长距离法(最小相似度)

最长距离被定义为两个类中最远的像个对象间的距离为簇间距离

3. 类平均法

计算两类中任意两个对象间的距离的平均值作为簇间距离

4. 中心法

定义两类的两个中心点的距离为簇间距离

分裂层次聚类DIANA

分裂的层次聚类方法使用自顶向下的策略把对象划分到层次结构中。从包含所有对象的簇开始,每一步分裂一个簇,直到仅剩单点簇或者满足用户指定的簇数为止

DIANA算法是典型的层次分裂聚类算法

DIANA算法中用到如下两个定义

簇的直径:计算一个簇中任意两个数据点之间的欧式距离,选取距离中的最大值作为簇的直径

平均相异度:两个数据点之间的平均距离

DIANA算法描述如下

凝聚层次聚类AGNES

凝聚的层次聚类方法使用自底向上的策略把对象组织到层次结构中。开始时以每个对象作为一个簇,每一步合并两个最相似的簇。AGNES算法是典型的凝聚层次聚类,起始将每个对象作为一个簇,然后根据合并准则逐步合并这些簇。两个簇间的相似度由这两个不同簇中距离最近的数据点的相似度确定。聚类的合并过程反复进行直到所有对象最终满足终止条件设置的簇数目

AGNES算法描述如下

层次聚类应用

Python中层次聚类的函数是A gglomerativeClustering(),最重要的参数有3个:n_clusters为聚类数目,affinity为样本距离定义,linkage是类间距离的定义,有3种取值

ward:组间距离等于两类对象之间的最小距离

average:组间距离等于两组对象之间的平均距离

complete:组间距离等于两组对象之间的最大距离

实战效果如下 可以看到明显的分为三个类

部分代码如下

from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import AgglomerativeClustering
import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle  #python自带的迭代器模块
#产生随机数据的中心
centers = [[1, 1], [-1, -1], [1, -1]]
#产生的数据个数
n_samples = 3000
#生产数据
X, lablete = 0)
#设置分层聚类函数
linkages = ['ward', 'average', 'complete']
n_clusters_ = 3
ac = AgglomerativeClustering(linkage = linkages[2],n_clusters = n_clusters_)
#训练数据
ac.fit(X)
#每个数据的分类
lables = ac.labels_
plt.figure(1)  #绘图
plt.clf()
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
    #根据lalables == k
    #X[my_members, 0]取出my_members对应位置为True的值的横坐标
    plt.plot(X[my_members, 0], X[my_members, 1], col + '.')    
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2月前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
85 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
2月前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
66 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
69 1
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
86 1
|
3月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
16天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
16天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
110 68
|
25天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
26天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
26天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。