Tablestore 物联网存储全面升级 -- 分析存储公测

本文涉及的产品
表格存储 Tablestore,50G 2个月
简介: 物联网存储功能介绍随着物联网技术的快速发展,物联网已广泛应用于制造业、能源、建筑、医疗、交通、物流仓储等多个领域,物联网的应用能够有效节约资源、提高效率、保障安全以及降低成本,帮助各行业实现可持续发展目标。在物联网场景中根据数据特点进行分类,数据主要包括设备元数据、设备消息数据和设备时序数据三种类型,不同类型数据的存储需求不同。物联网场景中不同类型数据的存储核心需求如下:设备元数据:主要数据为设备

物联网存储功能介绍

随着物联网技术的快速发展,物联网已广泛应用于制造业、能源、建筑、医疗、交通、物流仓储等多个领域,物联网的应用能够有效节约资源、提高效率、保障安全以及降低成本,帮助各行业实现可持续发展目标。

在物联网场景中根据数据特点进行分类,数据主要包括设备元数据、设备消息数据和设备时序数据三种类型,不同类型数据的存储需求不同。物联网场景中不同类型数据的存储核心需求如下:

  • 设备元数据:主要数据为设备的标识、属性和状态数据,具有高频更新、查询能力要求高等特点,可用于设备管理、设备圈选、设备状态查询,需要支持高并发低延迟的数据更新、多维度检索、地理空间检索以及数据实时计算与分析。
  • 设备消息数据:主要数据为设备事件上报消息、平台控制指令下发消息和消息推送,具有消息有序性、消息队列多等特点,需要使用消息队列模型存储,并且支持消息保序、大量队列数以及低成本海量数据存储。
  • 设备时序数据:主要数据为传感器采集数据、设备监控数据和设备轨迹数据,具有极少更新、数据规模大等特点,需要使用时序模型存储,并且支持高并发写入、低成本海量数据存储以及灵活的查询分析能力。

针对海量的设备消息,时序数据等场景,为了进一步降低用户的存储成本,提升数据分析能力,我们全面升级我们的物联网存储,支持分析存储能力!

分析存储介绍

低成本分析存储介绍

分析存储是独立的低成本存储引擎,存储引擎是针对时序场景定制和优化。分析存储可以实现低成本高压缩率存储之外,还能提供丰富的查询和分析能力。分析存储是独立于主存储存在的,可以和主存储有着不同的生命周期 TTL。分析存储的查询不会影响线上主存储的读写。下面我们就重点介绍下分析存储的技术原理和架构。

分析存储的技术原理和架构

列存储介绍

在现代数据库中,存储引擎通常有两种选项,一种是行存储,另一种则是列存储。这两种存储引擎都有自己擅长的场景,其主要区别在于数据的存储和检索方式不同。

行存储是指将一整行数据作为一个单元存储,包括行内所有的列。当需要进行查询或者分析时,需要读取整行数据,然后再根据需要的列进行筛选、排序等操作。这种存储方式适用于交易型系统和事务型数据库,例如:电子商务网站、银行系统、ERP系统等等。

列存储则是将每一个列的数据分别存储在不同的物理位置中,每个列单独进行压缩和编码。当需要进行查询或者分析时,可以只读取需要的列,避免了读取不必要的数据,从而提高了查询效率和数据处理速度。这种存储方式适用于时序分析场景,例如自动驾驶汽车车联网,云服务数据监控与分析等。

相比于传统的行存储方式,在时序场景采用列存储方式有以下两点优势:

  1. 高效的数据压缩:时序数据通常由机器产生,数据量远大于非时序场景,对数据压缩性能要求高。相比于行存储,列存储可以更好地利用数据重复性,结合 RLE、DICTIONARY、DELTA、BIT-PACKING等方法进行压缩编码 ,将数据进行压缩,存储空间利用率高,相比于行存储极大节省了存储成本。
  2. 快速的数据聚合计算分析: 时序数据的分析和聚合计算通常需要对一段连续时间内的一列或多列数据进行操作,在采用传统的行存储方式时,需要读取每一行数据并按列筛选需要的数据,当数据表的列很多但实际读取的列较少时,会产生很大的额外开销。相比之下,采用列存储方式只需要按列读取需要的数据,读取数据量少,从而减少了IO开销。同时,列存储方式可以批量读取数据,减少了火山模型中虚函数调用的次数,提高了数据局部性和cache命中率,进一步提升了性能。此外,列存储方式还可以结合CPU向量化技术,进行高效的向量化计算,从而更加有效地提高计算性能。综上,采用列存储方式可以显著提高时序数据的分析和聚合计算效率,尤其是在时序场景下,更加具有优势。

分析存储的功能

海量数据的实时分析

介绍了分析存储的一些基础知识后,我们来看一下 Tablestore 是如何实现分析存储的。

  1. 冷热数据分层存储,采用不同的存储格式
  1. 针对时序的热数据,我们复用了表格存储之前的行列混合的宽表存储。可以提供海量数据的实时自增写,覆盖和查询。
  2. 针对时序全量历史数据,我们采用列存储,并可以提供不同存储介质的存储包括 SSD,HDD 和 OSS。
  1. 独立的面向海量冷数据存储优化的 AP 分析执行引擎。
  2. 灵活分层的 TTL 设置,在同一个表上,主存储和分析存储可以采用不同的生命周期。

如下图,深橙标出的就是我们针对分析存储新添加的存储和查询分析模块。

有了分析存储和分布式的计算引擎,物联网分析存储可以提供单 SQL 百亿数据的实时分析能力

低成本的数据存储

以车联网时序场景数据为例,数据每行大约 200 byte,包括车辆ID、里程、速度、温度、发动机状态参数等采集指标。

原始数据生成 500w 行,大小为 975 MB,大约 1 GB。分别采用 Apache Avro和 IotStore 分析存储两种列存储格式进行存储,其中 Avro 大小为 265 MB,相比原始优化 3.7 倍,IotStore 分析存储大小为 46MB,相比原始优化 21 倍。

可以看到针对时序场景,列存储存储压缩效率显著优于行存储。

灵活的数据冷热分层

公测阶段,分析存储不会收费,在商业化后,我们也会本着设计的初衷。采用极低的定价,成为用户物联网,时序场景的低成本长期存储的首选解决方案。我们会采用三种存储介质方便用户根据不同的时间范围定义存储介质,并通过高压缩率实现最终的极低成本存储。分析存储的存储介质包括:SSD 和 HDD 混合,全HDD,以及 OSS 存储。不同的存储介质可以提供相应的查询 QPS 和分析时延。

如果对公测分析存储有任何问题欢迎加钉钉群,在技术群里和我们交流。

 

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
8月前
|
人工智能 边缘计算 监控
【开源视频联动物联网平台】视频AI智能分析部署方式
【开源视频联动物联网平台】视频AI智能分析部署方式
389 3
|
4天前
|
存储 人工智能 NoSQL
Tablestore深度解析:面向AI场景的结构化数据存储最佳实践
《Tablestore深度解析:面向AI场景的结构化数据存储最佳实践》由阿里云专家团队分享,涵盖Tablestore十年发展历程、AI时代多模态数据存储需求、VCU模式优化、向量检索发布及客户最佳实践等内容。Tablestore支持大规模在线数据存储,提供高性价比、高性能和高可用性,特别针对AI场景进行优化,满足结构化与非结构化数据的统一存储和高效检索需求。通过多元化索引和Serverless弹性VCU模式,助力企业实现低成本、灵活扩展的数据管理方案。
30 12
|
7月前
|
人工智能 物联网 5G
物联网投资趋势:市场分析与预测
【6月更文挑战第7天】物联网驱动全球经济,市场规模迅速扩大,尤其在智能家居、智能工业、智能医疗领域。新兴商业模式和投资机会涌现,如平台整合、核心技术研发。5G普及、AI融合及物联网安全是未来投资趋势。Python示例代码显示了与物联网设备交互的可能性。尽管面临技术更新快、竞争激烈等挑战,投资者需了解行业趋势、关注创新企业、评估风险和回报,以实现长期投资成功。物联网投资前景广阔,将成为投资领域关键部分。
103 2
|
3月前
|
监控 物联网 智能硬件
物联网卡可以升级套餐吗
物联网卡(IoT SIM卡)主要用于物联网设备,如智能家居、智能城市基础设施、远程监控等,以实现设备与互联网的连接。对于物联网卡是否可以升级套餐,这主要取决于几个因素,包括你与物联网服务提供商的合同条款、服务提供商的政策,以及你当前使用的物联网卡套餐类型。
|
2月前
|
SQL 监控 物联网
ClickHouse在物联网(IoT)中的应用:实时监控与分析
【10月更文挑战第27天】随着物联网(IoT)技术的快速发展,越来越多的设备被连接到互联网上,产生了海量的数据。这些数据不仅包含了设备的状态信息,还包括用户的使用习惯、环境参数等。如何高效地处理和分析这些数据,成为了一个重要的挑战。作为一位数据工程师,我在一个物联网项目中深入使用了ClickHouse,以下是我的经验和思考。
132 0
|
3月前
|
安全 网络协议 物联网
物联网僵尸网络和 DDoS 攻击的 CERT 分析
物联网僵尸网络和 DDoS 攻击的 CERT 分析
|
5月前
|
存储 人工智能 数据管理
OSS&Tablestore 向量检索能力全新升级,重塑AI时代数据管理
阿里云 OSS Indexing 发布了向量索引和检索能力。该功能除了可以对 OSS Meta 进行检索之外,还可以对多媒体数据元信息、用户自定义元数据以及向量语义进行检索。OSS Indexing 功能,是依托阿里云表格存储 TableStore 提供的索引存储和检索能力而构建的。表格存储针对成本、规模、召回率等挑战,发布了低成本、大规模、高性能、高召回率的向量检索服务,能以较低成本支持千亿规模数据的存储和检索。
273 9
|
5月前
|
存储 人工智能 NoSQL
OSS&Tablestore 向量检索能力全新升级,重塑AI时代数据管理
近日,阿里云成功举办了“AI驱动:数据管理的进化与创新 ”线上新品发布会。发布会上,阿里云存储产品向量检索能力全新升级,重塑AI时代数据管理。
|
6月前
|
安全 物联网 物联网安全
物联网安全风险分析
### 物联网安全概览 #### 背景 物联网设备因其默认安全设置薄弱,成为黑客攻击目标。随着OT网络中物联网角色增多,这些设备临近关键系统,攻击者利用其发起攻击。 #### 物联网定义 物联网(IoT)是通过信息传感设备连接物品与互联网,实现智能化识别、定位、跟踪的网络。涵盖智能家居、可穿戴设备到复杂工业系统。 #### 攻击者偏好 物联网设备易受攻击,2022年针对物联网的网络攻击大幅增长,如DDoS攻击和恶意软件事件。物联网端点的安全疏忽使其成为恶意软件传播途径。 #### 制造业面临风险 制造业因物联网设备被攻击,导致勒索软件攻击增加,因生产中断造成的损失更大。
物联网安全风险分析
|
6月前
|
机器学习/深度学习 数据可视化 物联网
物联网设备的数据可视化与分析:解锁未来智能世界的钥匙
【7月更文挑战第6天】物联网设备的数据可视化与分析是解锁未来智能世界的关键。通过不断探索和实践,我们可以更好地利用物联网数据,推动技术创新,提升社会运行效率,为人们的生活带来更多便利和惊喜。面对技术挑战,我们应保持开放心态,积极学习新技术、新方法,不断优化数据可视化与分析的流程和效果,为物联网的繁荣发展贡献力量。