鲸鱼优化算法及其在无线网络资源分配中的应用(Matlab代码实现)

简介: 鲸鱼优化算法及其在无线网络资源分配中的应用(Matlab代码实现)

💥1 概述

鲸鱼优化算法(Whale Optimization Algorithm)是一种新兴的智能优化算法,在2016年提出。算法灵感来源于鲸鱼围捕猎物的行为。鲸鱼在捕猎过程中采用包围猎物与环形游动喷出气泡网来驱赶猎物两种方式进行捕猎。选取Sphere函数作为测试基函数,比较鲸鱼优化算法WOA与遗传算法GA、粒子群算法PSO的寻优性能,从结果图可以看到,鲸鱼算法具有较好的全局搜索性能。

📚2 运行结果

 

🎉3 参考文献


[1]王镱嬴. 基于改进鲸鱼算法的神经网络预测模型的研究[D].辽宁科技大学,2020.DOI:10.26923/d.cnki.gasgc.2020.000271.

👨‍💻4 Matlab代码

主函数部分代码:

clear all 
clc
% parameters for the WOA algorithm
SearchAgents_no = 30;   % Number of search agents
Max_iter = 500;         % Maximum number of iterations
% parameters for simulations
I = 4;                          % number of users
Pc = 0.1*1e-3;                  % circuit power consumption
varrho = 1;                     % power-amplifier inefficiency factor
n0 = 0.1*1e-6;                  % noise power
pMax = 1e-3*[0.7 0.8 0.9 1];    % max transmit power
pMin = zeros(1, I);             % min transmit power
stopEps = 1e-3;                 % stopping criterion
r_req = 0.8;                    % minimum rate requirement
gArray = [0.4310 0.0002 0.0129 0.0011;
          0.0002 0.3018 0.0005 0.0031;
          0.2605 0.0008 0.4266 0.0099;
          0.0039 0.0054 0.1007 0.0634];
diagGArray = reshape(diag(gArray),1,I);
% d_EV = 10*rand(1,I). Random links are created in a 10m-by-10m area
d_EV = [4.1454, 3.6180, 6.4587, 4.9546];
gArray_EV = d_EV.^-4;
% =========================================================================
% =============================== EXAMPLE 1 ===============================
% =========================================================================
% Load details of the selected benchmark function for the WOA algorithm
Function_name = 'Ex1';
p_Max = 10e-3*ones(1,I);
p_Min = 1e-10*ones(1,I);
% WOA-based Algorithm
[lb, ub, dim, fobj] = Get_Functions_details(Function_name, I, p_Max, p_Min, gArray, Pc, varrho, n0, r_req, gArray_EV);
[Best_score, Best_pos, WOA_cg_curve] = WOA(SearchAgents_no, Max_iter, lb, ub, dim, fobj);
display(['The best solution obtained by WOA is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by WOA is : ', num2str(Best_score)]);
% Path-following procedure (PFP)
[~, Phi, ~] = PFP( I, p_Max, p_Min, n0, gArray, gArray_EV, stopEps);
% ============================== plot figures =============================
i = 0;
% Plot the figure - the curve of min secrecy throughput
figure(5*i + 1)
hold on
plot(0:length(WOA_cg_curve), [0 WOA_cg_curve], 'r-p', 'linewidth', 4.0, 'markers', 16);
plot(0:length(Phi), [0 Phi'], 'b-d', 'linewidth', 4.0, 'markers', 16);
xticks = 0:2:length(WOA_cg_curve);
set(gca,'xtick',xticks); 
set(gca,'FontSize',30,'XLim',[0 length(WOA_cg_curve)]);
xlabel('Iteration'); 
ylabel('Min secrecy throughput(bps/Hz)');
legend('WOA-based Alg','Path-Following Procedure');
box on;
相关文章
|
2天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
3天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
10天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
14 3
|
9天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
13天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
12天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
13天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
187 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
122 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
87 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码