基于负相关误差函数的4集成BP神经网络matlab建模与仿真

简介: **算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ>0增强集成效果,提高预测准确性和系统稳健性。

1.算法运行效果图预览
(完整程序运行后无水印)

image.png
image.png

2.算法运行软件版本
MATLAB2022a

3.部分核心程序

  Index
  jj=1;     
  error2 = zeros(Len,KER);
  while(jj<=Len)         
    for k=1:No;
        d(k)=T(jj);  
    end
    for i=1:NI;
        x(i)=P(jj,i);
    end
    %集成多个BP神经网络
    for bpj = 1:KER      
        for j=1:Nh%BP前向            
            net=0;              
            for i=1:NI                
                net=net+x(i)*W0(i,j,bpj); %加权和∑X(i)V(i)            
            end
            y(j)=1/(1+exp(-net));               
        end
        for k=1:No             
            net=0;              
            for j=1:Nh                  
                net=net+y(j)*W(j,k,bpj);             
            end
            %输出值
            o(k)=1/(1+exp(-net));              
        end
        RRR(jj,1) = round(o);
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        errortmp=0.0;         
        for k=1:No              
            errortmp=errortmp+(d(k)-(o(k)))^2;%传统的误差计算方法
        end
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        error2(jj,bpj)=0.5*errortmp/No;         
        for k=1:No%BP反向计算          
            yitao(k)=(d(k)-o(k))*o(k)*(1-o(k));%偏导      
        end
        for j=1:Nh         
            tem=0.0;         
            for k=1:No             
                tem=tem+yitao(k)*W(j,k,bpj);       
            end
            yitay(j)=tem*y(j)*(1-y(j));%偏导    
        end
        for j=1:Nh%权值更新         
            for k=1:No              
                deltaW(j,k,bpj) = Learning_Rate*yitao(k)*y(j);            
                W(j,k,bpj)      = W(j,k,bpj)+deltaW(j,k,bpj);            
            end
        end
        for i=1:NI         
            for j=1:Nh              
                deltaW0(i,j,bpj) = Learning_Rate*yitay(j)*x(i);            
                W0(i,j,bpj)      = W0(i,j,bpj)+deltaW0(i,j,bpj);             
            end
        end
    end
    jj=jj+1; 
  end
  %BP训练结束     
  error = sum(mean(error2));  
  Index = Index+1;
  ERR   = [ERR,error]; 
end

4.算法理论概述
基于负相关误差函数(Negative Correlation Learning, NCL)的集成学习方法应用于BP(Backpropagation)神经网络,旨在通过训练多个相互独立且在预测上具有负相关的模型,提高整体模型的泛化能力和稳定性。这种方法结合了神经网络的强大表达能力和集成学习的思想,以提高预测精度和鲁棒性。

   集成学习是机器学习领域的一种重要策略,它通过组合多个弱学习器来构建一个强学习器。NCL在集成学习框架下的应用,特别是与BP神经网络结合时,其核心思想是促使每个神经网络模型学习到不同的模式,从而减少整体模型之间的错误相关性。当模型间的预测错误呈现负相关时,即一个模型在某些样本上犯错时,其他模型能在这些样本上正确预测,整个集成系统的错误率会显著降低。

  负相关误差函数的公式:

image.png

   可知,当λ=0时,后面的惩罚项为0,相当于是网络单独训练,也就是传统的集成方式,当λ取大于0的值时为负相关集成,所以,以下对λ取值分别为0和其他值进行比较.

   基于负相关误差函数的集成BP神经网络,通过鼓励模型间预测的负相关性,有效提升了模型的泛化能力。
相关文章
|
4天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
21 3
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
20天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
57 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码

热门文章

最新文章