【MATLAB第48期】基于MATLAB的REMR-LSTM多次循环递归拓展理论的长短期记忆网络LSTM回归预测模型,PCA预处理降维

简介: 【MATLAB第48期】基于MATLAB的REMR-LSTM多次循环递归拓展理论的长短期记忆网络LSTM回归预测模型,PCA预处理降维

【MATLAB第48期】基于MATLAB的REMR-LSTM多次循环递归拓展理论的长短期记忆网络LSTM回归预测模型,PCA预处理降维


在本文中,将展示一个使用多次循环递归拓展(REMR)理论来改进LSTM回归预测问题。

通过多次循环,优化训练集和测试集输入权重,从而更新输入数据, 其次通过PCA主成分分析降维,控制特征数量。从而优化输入变量,改善训练模型,优化预测结果。


一、数据情况


103*8 前七列输入,最后一列输出

前80为训练集,后23为测试集。

%%  导入数据
res = xlsread('数据集.xlsx');
%%  划分训练集和测试集
temp =1:size(res,1);
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

二、LSTM参数


layers = [
    sequenceInputLayer(7)               % 建立输入层
    lstmLayer(4,'OutputMode','sequence')  % LSTM层 , 'OutputMode', 'last'
    reluLayer                           % Relu激活层
    fullyConnectedLayer(1)              % 全连接层
    regressionLayer];                   % 回归层
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MiniBatchSize', 30, ...               % 批大小
    'MaxEpochs', 1200, ...                 % 最大迭代次数
    'InitialLearnRate', 1e-2, ...          % 初始学习率为
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.5, ...        % 学习率下降因子
    'LearnRateDropPeriod', 800, ...        % 经过 800 次训练后 学习率为 0.01 * 0.5
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Plots', 'none', ...      % 画出曲线
    'Verbose', 1);


三、LSTM运行结果



四、REMR-LSTM思路与运行结果


1.多次循环运行模型,设定循环次数。为了便于展示,循环次数设为5。


rounds=5;%循环次数5

2.建立训练模型 net

[network{j}]= LSTM_FUN(p_train,t_train);    

3.初始化训练集与测试集输入变量权重

[Q_tr]= LSTM_w(LSTM,p_train'); %训练集模型输入权重
[Q_ts]= LSTM_w(LSTM,p_test'); %测试集模型输入权重

4.更新训练集与测试集输入变量

xtr=[ Q_tr tim1];
xts=[Q_ts tim2];

5.降维控制变量数量,得到最终变量

pca(xtr)
pca(xts)

6.带入新变量预测,得到评价结果

第三个子图可看出,训练集和测试集平均指标,在第五次循环结果最佳。

故选取第五次循环结果绘图。

与未优化前对比明显得到改善。


五、代码获取


后台私信回复“49期”可获取下载链接。

相关文章
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
23天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
7月前
|
机器学习/深度学习 存储 自然语言处理
程序与技术分享:DeepMemoryNetwork深度记忆网络
程序与技术分享:DeepMemoryNetwork深度记忆网络
|
3月前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
298 4
|
5月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
231 2
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
258 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
153 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
125 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)