一文带你入门神经网络需要的PyTorch基础

简介: PyTorch 是一个开源的机器学习库,提供了强大的计算能力和灵活的用于构建和训练神经网络的工具。

1 PyTorch简介



01d978d399f848a7aebaff24cd28155c.png

PyTorch 是一个开源的机器学习库,提供了强大的计算能力和灵活的用于构建和训练神经网络的工具。它的核心特点包括:


动态图计算:与其他机器学习库(如 TensorFlow)不同,PyTorch 允许在运行时动态构建计算图,这使得可以使用 Python 控制流操作(如 if、for、while)来构建模型。


快速 GPU 加速:PyTorch 提供了与 CUDA 相关的 API,可以使用 GPU 加速计算。这使得可以使用 PyTorch 训练大型深度学习模型,而无需太多编码工作。


简单易用:PyTorch 提供了丰富的 API 和数据结构,使得机器学习任务变得简单易用。同时,它还与其他机器学习库(如 NumPy)相集成,使得可以方便地将 PyTorch 与其他库集成在一起。


PyTorch 适用于各种机器学习任务,包括图像分类、自然语言处理、生成对抗网络(GAN)等。它已被广泛应用于学术界和工业界,并被许多公司和组织用于实际应用中。


2 PyTorch张量


正常情况下,我们会直接定义一个变量以及进行变量的加减。


x = 10
y = 2*x*x+3
print(x,y)
# 10 103


但如果使用Pytorch定义变量的话,会以张量(tensor)的形式存在。使用张量进行赋值计算的新变量,也会成为张量。


x = torch.tensor(10)
print(x)
#tensor(10)
y = 2*x*x+3
print(y)
#tensor(203)


在深度学习里,Tensor实际上就是一个多维数组(multidimensional array)。而Tensor的目的是能够创造更高维度的矩阵、向量。


3 PyTorch的自动求导机制


3.1单变量求导

自动求导机制是PyTorch相比numpy的最重要区别之一。我们在创建张量的时候,需要给Torch一个额外的参数:require_grad=True。这个参数的意思是:梯度反传时对该 Tensor 计算梯度。


x = torch.tensor(10.0, requires_grad=True)
print(x)
1


此时的打印结果是tensor(10., requires_grad=True)。可以发现上面的代码输入的还是10,这次我改成了10.0,是因为如果进行求导的话,torch要求的数据格式是float类型而不能是int类型。


y = 2*x*x+3
print(y)


此时的打印结果是tensor(203., grad_fn=),可以看到y也随之发生了变化。接下来我们来计算梯度。

y.backward()
print(x.grad)


此时的打印结果是tensor(200.),这里backward函数完成了计算梯度工作,而x.grad则为在x点的梯度值。


3.2多变量求导与链式求导

在实际的神经网络建模中,一定不只一个节点和一个中间层,因此多变量求导与链式求导是常态,Torch对此也是完美支持。

假设此时我们增加一个变量z,z是y的函数,y是x的函数,那么当我们需要求dz/dx时,就需要用来链式求导法则。


import torch
x = torch.tensor(10.0, requires_grad=True)
y = 2*x*x+3
z = 5*y+6
z.backward()
print(x.grad)
# tensor(200.)



这个结果与dz/dy * dy/dx 完全相同。

接下来让上面的函数变的更复杂些,加入变量a与b,函数间的关系如下:



c692e2efe5274551af0f3322be96e37b.png


这同时也和神经网络更像了,可以把x和a想象成输入层,y和b想象成隐含层,z想象成输出层。如果我们需要求dz/dx,那需要对所有的途径分别求导并相加,也就是:


image.png


d z d x = d z d y ∗ d y d x + d z d b ∗ d b d x \frac{dz}{dx}=\frac{dz}{dy}*\frac{dy}{dx}+\frac{dz}{db}*\frac{db}{dx}
dx
dz
 = 
dy
dz
dx
dy
 + 
db
dz
dx
db


Torch同样可以轻松完成以上操作。


import torch
a = torch.tensor(5.0,requires_grad=True)
x = torch.tensor(10.0, requires_grad=True)
y = 2*x*x+3*a
b = 6*x*a
z = y*y+1/(b*y)
z.backward()
print(x.grad)
# tensor(17200.)


可以看到,PyTorch会根据我们输入的变量关系,计算出z对x的导数。


以上内容并未覆盖Pytorch的全部内容,但是包含了神经网络建模的大多知识点与相关思想。如果希望进一步了解Pytorch,可以查看下一篇博文,如何使用Pytorch搭建一个简单的三层神经网络模型(撰写中)。


相关文章
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
PyTorch深度学习 ? 带你从入门到精通!!!
🌟 蒋星熠Jaxonic,深度学习探索者。三年深耕PyTorch,从基础到部署,分享模型构建、GPU加速、TorchScript优化及PyTorch 2.0新特性,助力AI开发者高效进阶。
PyTorch深度学习 ? 带你从入门到精通!!!
|
3月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
103 1
|
3月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
183 0
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
基于Pytorch 在昇腾上实现GCN图神经网络
本文详细讲解了如何在昇腾平台上使用PyTorch实现图神经网络(GCN)对Cora数据集进行分类训练。内容涵盖GCN背景、模型特点、网络架构剖析及实战分析。GCN通过聚合邻居节点信息实现“卷积”操作,适用于非欧氏结构数据。文章以两层GCN模型为例,结合Cora数据集(2708篇科学出版物,1433个特征,7种类别),展示了从数据加载到模型训练的完整流程。实验在NPU上运行,设置200个epoch,最终测试准确率达0.8040,内存占用约167M。
基于Pytorch 在昇腾上实现GCN图神经网络
|
7月前
|
机器学习/深度学习 算法 PyTorch
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
深度学习近年来在多个领域取得了显著进展,但其核心组件——人工神经元和反向传播算法自提出以来鲜有根本性突破。穿孔反向传播(Perforated Backpropagation)技术通过引入“树突”机制,模仿生物神经元的计算能力,实现了对传统神经元的增强。该技术利用基于协方差的损失函数训练树突节点,使其能够识别神经元分类中的异常模式,从而提升整体网络性能。实验表明,该方法不仅可提高模型精度(如BERT模型准确率提升3%-17%),还能实现高效模型压缩(参数减少44%而无性能损失)。这一革新为深度学习的基础构建模块带来了新的可能性,尤其适用于边缘设备和大规模模型优化场景。
337 16
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
|
10月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
540 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
7月前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现CTR模型DIN(Deep interest Netwok)网络
本文详细讲解了如何在昇腾平台上使用PyTorch训练推荐系统中的经典模型DIN(Deep Interest Network)。主要内容包括:DIN网络的创新点与架构剖析、Activation Unit和Attention模块的实现、Amazon-book数据集的介绍与预处理、模型训练过程定义及性能评估。通过实战演示,利用Amazon-book数据集训练DIN模型,最终评估其点击率预测性能。文中还提供了代码示例,帮助读者更好地理解每个步骤的实现细节。
|
7月前
|
机器学习/深度学习 自然语言处理 PyTorch
基于Pytorch Gemotric在昇腾上实现GAT图神经网络
本实验基于昇腾平台,使用PyTorch实现图神经网络GAT(Graph Attention Networks)在Pubmed数据集上的分类任务。内容涵盖GAT网络的创新点分析、图注意力机制原理、多头注意力机制详解以及模型代码实战。实验通过两层GAT网络对Pubmed数据集进行训练,验证模型性能,并展示NPU上的内存使用情况。最终,模型在测试集上达到约36.60%的准确率。
|
7月前
|
算法 PyTorch 算法框架/工具
PyTorch 实现FCN网络用于图像语义分割
本文详细讲解了在昇腾平台上使用PyTorch实现FCN(Fully Convolutional Networks)网络在VOC2012数据集上的训练过程。内容涵盖FCN的创新点分析、网络架构解析、代码实现以及端到端训练流程。重点包括全卷积结构替换全连接层、多尺度特征融合、跳跃连接和反卷积操作等技术细节。通过定义VOCSegDataset类处理数据集,构建FCN8s模型并完成训练与测试。实验结果展示了模型在图像分割任务中的应用效果,同时提供了内存使用优化的参考。
|
7月前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本实验基于PyTorch Geometric,在昇腾平台上实现GraphSAGE图神经网络,使用CiteSeer数据集进行分类训练。内容涵盖GraphSAGE的创新点、算法原理、网络架构及实战分析。GraphSAGE通过采样和聚合节点邻居特征,支持归纳式学习,适用于未见节点的表征生成。实验包括模型搭建、训练与验证,并在NPU上运行,最终测试准确率达0.665。

热门文章

最新文章

推荐镜像

更多