【假期 AI 充电】揭秘大语言模型实践:分布式推理的工程化落地才是关键!

本文涉及的产品
Serverless 应用引擎 SAE,800核*时 1600GiB*时
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 【假期 AI 充电】揭秘大语言模型实践:分布式推理的工程化落地才是关键!

分布式推理成为大模型落地的首选方案


随着 3 月 15 日 OpenAI 重磅发布了 GPT4,其在司法考试、程序编程上的惊艳表现,将大家对大模型的热情推向了顶点,人们纷纷讨论是否我们已经进入到通用人工智能的时代。与此同时,基于大语言模型的应用也如雨后春笋出现在大家面前,其在协同办公、客服对话、语言翻译、内容生成等方面的使用均来带了前所未有的畅快体验。


在我们享受大语言模型带来的普惠 AI 能力时,它也给开发者带来了前所未有的挑战。GPT3 模型具有 1750 亿参数量,即使是针对学术界和初级用户的 Alpaca 也具有 70 亿的参数量,因此单机多卡的分布式推理便成为了大模型落地方案的不二选择。


本文将以 Bloom7B1 模型为样例,分享在阿里云容器服务 ACK 上,进行大语言模型分布式推理的具体实践。


工程化落地是大模型分布式推理的关键


随着越来越多的大语言模型发布,其中也有很多表现优秀的开源大语言模型能让大家体验,人们通过已有的大语言模型构建自己的应用也不再遥不可及。然而,与以往的模型不同,单张 GPU 卡的显存可能不足以支撑大语言模型。因此,需要使用模型并行技术,将大语言模型进行切分后,在多张 GPU 卡上进行推理。在本文中,我们使用 DeepSpeed Inference 来部署大语言模型分布式推理服务。


DeepSpeed Inference 是 Microsoft 提供的分布式推理解决方案,能够很好的支持 transformer 类型的大语言模型。DeepSpeed Inference 提供了模型并行能力,在多 GPU 上对大模型并行推理。通过张量并行技术同时利用多个 GPU,提高推理性能。DeepSpeed 还提供了优化过的推理定制内核来提高 GPU 资源利用率,降低推理延迟。详细信息可参考DeepSpeed Inference[3]


有了大模型分布式推理方案,然而想要在 Kubernetes 集群中高效部署大模型推理服务,还存在很多工程化挑战,比如大规模的 GPU 等异构资源如何高效地管理运维和自动调度?如何快速部署推理服务,服务上线后如何保证资源能够应对波动的访问量?以及没有适合的工具进行推理服务时延、吞吐、GPU 利用率、显存占用等关键指标监控,没有合理的模型切分方案,模型版本管理等。


本文使用阿里云容器服务 ACK 云原生 AI 套件进行 DeepSpeed 分布式推理的实践,可以轻松管理大规模异构资源,精细化的 GPU 调度策略和丰富的 GPU 监控告警能力,使用 Arena 快速提交和管理可弹性伸缩的推理服务,以及服务化运维等。


实践示例概述


本例中会使用以下组件:


  • Arena:Arena 是基于 Kubernetes 的机器学习轻量级解决方案,支持数据准备、模型开发,模型训练、模型预测的完整生命周期,提升数据科学家工作效率。同时和阿里云的基础云服务深度集成,支持 GPU 共享、CPFS 等服务,可以运行阿里云优化的深度学习框架,最大化使用阿里云异构设备的性能和成本的效益。更多 arena 信息,可以参考云原生 AI 套件开发者使用指南[1]
  • Ingress:在 Kubernetes 集群中,Ingress 作为集群内服务对外暴露的访问接入点,其几乎承载着集群内服务访问的所有流量。Ingress 是 Kubernetes 中的一个资源对象,用来管理集群外部访问集群内部服务的方式。您可以通过 Ingress 资源来配置不同的转发规则,从而达到根据不同的规则设置访问集群内不同的 Service 所对应的后端 Pod。更多 Ingress 信息,可以参考 Ingress 概述[2]
  • DeepSpeed Inference:是 Microsoft 提供的分布式推理解决方案,提供了对 GPT、BLOOM 等 LLM 模型的分布式推理优化,具体可参考 DeepSpeed Inference[3]


下列示例中,我们通过 Arena 在 Kubernetes 集群中部署了基于 Bloom 7B1 模型的单机多卡分布式推理服务,使用 DJLServing 作为模型服务框架。DJLServing 是由 Deep Java Library (DJL) 提供支持的高性能通用模型服务解决方案,能直接支持 DeepSpeed Inference,通过 HTTP 提供大模型推理服务,详细信息可参考 DJLServing[4]。使用 Arena 提交推理任务,在 Kubernetes 中使用 Deployment 部署推理服务,从共享存储 OSS 中加载模型和配置文件,通过 Service 暴露服务,为推理服务提供弹性伸缩、GPU 共享调度、性能监控、成本分析与优化等功能,降低您的运维成本。


实践示例步骤


环境准备

  • 创建包含 GPU 的 Kubernetes 集群[5]
  • 安装云原生 AI 套件[6]


大模型推理实践

接下来演示如何使用 Arena 命令行工具,在 ACK 容器服务中提交一个 Bloom7B1 模型的单机多卡分布式推理任务,并配置 Ingress 来进行服务访问。


1. 模型配置编写

模型配置中包括了两个方面的内容:


  • 配置文件,对应本例中的 serving.properties 文件,里面描述了模型配置的相关信息。这里重点关注两个参数:
  • tensor_parallel_degree:用于指定 tensor parallel 的 size,本例中设置为 2,也就是使用 2 张 GPU 卡进行分布式推理;
  • model_id:为模型的名称,huggingface 中 model 的名称,也可以是 download 后的模型地址;本例样例中,会将 bloom7B1 模型下载到 OSS 中,并通过 PVC 的形式挂载到容器内,因此这里会指定 OSS 的地址。


  • 推理逻辑文件,用于完成模型的加载和 request 的处理,具体如下:
  • get_model 函数:先进行 model 和分词器的加载,然后将 model 通过 deepspeed.init_inference 转换为具有分布式推理能力的 model,最后通过新生成的 model 来构建推理 pipeline;
  • handle 函数:通过调用 get_model 函数中生成的 pipeline 来完成 tokenize,forward 和 detokenize 流程。


serving.properties 内容如下:


  • 这里的 model_id 指定为 pvc 挂载后的容器内地址;如果没有提前 download 模型到本地,可以指定为 bigscience/bloom-7b1,程序会执行自动下载(模型文件一共 15G 作业)


engine=DeepSpeed
option.parallel_loading=true
option.tensor_parallel_degree=2
option.model_loading_timeout=600
option.model_id=model/LLM/bloom-7b1/deepspeed/bloom-7b1
option.data_type=fp16
option.max_new_tokens=100


model.py 内容如下:


mport os
import torch
from typing import Optional
import deepspeed
import logging
logging.basicConfig(format='[%(asctime)s] %(filename)s %(funcName)s():%(lineno)i [%(levelname)s] %(message)s', level=logging.DEBUG)
from djl_python.inputs import Input
from djl_python.outputs import Output
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
predictor = None
def get_model(properties: dict):
    model_dir = properties.get("model_dir")
    model_id = properties.get("model_id")
    mp_size = int(properties.get("tensor_parallel_degree", "2"))
    local_rank = int(os.getenv('OMPI_COMM_WORLD_LOCAL_RANK', '0'))
    logging.info(f"process [{os.getpid()}  rank is [{local_rank}]]")
    if not model_id:
        model_id = model_dir
    logging.info(f"rank[{local_rank}] start load model")
    model = AutoModelForCausalLM.from_pretrained(model_id)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    logging.info(f"rank[{local_rank}] success load model")
    model = deepspeed.init_inference(model,
                                     mp_size=mp_size,
                                     dtype=torch.float16,
                                     replace_method='auto',
                                     replace_with_kernel_inject=True)
    logging.info(f"rank[{local_rank}] success to convert model to deepspeed kernel")
    return pipeline(task='text-generation',
                    model=model,
                    tokenizer=tokenizer,
                    device=local_rank)
def handle(inputs: Input) -> Optional[Output]:
    global predictor
    if not predictor:
        predictor = get_model(inputs.get_properties())
    if inputs.is_empty():
        # Model server makes an empty call to warmup the model on startup
        return None
    data = inputs.get_as_string()
    output = Output()
    output.add_property("content-type", "application/json")
    result = predictor(data, do_sample=True, max_new_tokens=50)
    return output.add(result)


分别将 serving.properties、model.py 和模型文件(可选)上传到 OSS 上。具体操作,请参见控制台上传文件[7]


上传到 OSS 之后,分别创建名称为 bloom7b1-pv 和 bloom7b1-pvc 的 PV 和 PVC,以用于推理服务的容器挂载。具体操作,请参见使用 OSS 静态存储卷[8]


2. 启动服务

将配置文件信息放入 PVC 中,可通过下列 arena 命令启动推理服务。


  • --gpus:设置为 2,表示需要使用 2 张 GPU 卡进行分布式推理
  • --data:bloom7b1-pvc 为上一步创建的 pvc,/model 为 pvc 挂载到容器中的路径


arena serve custom \
    --name=bloom7b1-deepspeed \
    --gpus=2 \
    --version=alpha \
    --replicas=1 \
    --restful-port=8080 \
    --data=bloom7b1-pvc:/model \
    --image=ai-studio-registry-vpc.cn-beijing.cr.aliyuncs.com/kube-ai/djl-serving:2023-05-19 \
    "djl-serving -m "


查看任务运行情况。


$ kubectl get pod | grep bloom7b1-deepspeed-alpha-custom-serving
bloom7b1-deepspeed-alpha-custom-serving-766467967d-j8l2l    1/1     Running     0          8s
# 查看启动日志
kubectl logs bloom7b1-deepspeed-alpha-custom-serving-766467967d-j8l2l -f


服务启动日志如下,通过日志我们可以看到:


  • 使用的 tensor parallel size 为 2 的分布式并行进行推理
  • 服务中启动了 process id 为 92 和 93 的两个进程,rank id 分别为 0 和 1
  • rank0 和 rank0 会同时进行 kernel 的转换和模型的加载,以实现分布式推理的任务


INFO  ModelServer Starting model server ...
INFO  ModelServer Starting djl-serving: 0.23.0-SNAPSHOT ...
INFO  ModelServer
INFO  PyModel Loading model in MPI mode with TP: 2.
INFO  PyProcess [1,0]<stdout>:process [92  rank is [0]]
INFO  PyProcess [1,0]<stdout>:rank[0] start load model
INFO  PyProcess [1,1]<stdout>:process [93  rank is [1]]
INFO  PyProcess [1,1]<stdout>:rank[1] start load model
INFO  PyProcess [1,0]<stdout>:rank[0] success to convert model to deepspeed kernel
INFO  PyProcess [1,1]<stdout>:rank[1] success to convert model to deepspeed kernel
INFO  PyProcess [1,0]<stdout>:rank[0] success load model
INFO  PyProcess [1,1]<stdout>:rank[1] success load model
INFO  PyProcess Model [deepspeed] initialized.
INFO  PyProcess Model [deepspeed] initialized.
INFO  PyModel deepspeed model loaded in 297083 ms.
INFO  ModelServer Initialize BOTH server with: EpollServerSocketChannel.
INFO  ModelServer BOTH API bind to: http://0.0.0.0:8080


3. 服务验证

这里我们启动 port-forward 来进行快速验证


# 使用 kubectl 启动port-forward
kubectl  -n default-group port-forward svc/bloom7b1-deepspeed-alpha 9090:8080


在另一个终端,请求服务


# 打开新的终端,执行下列命令
$ curl -X POST http://127.0.0.1:9090/predictions/deepspeed -H "Content-type: text/plain" -d "I'm very thirsty, I need"
[
  {
    "generated_text":"I'm very thirsty, I need some water.\nWhat are you?\n- I'm a witch.\n- I thought you'd say that.\nI know a great witch.\nShe's right in here.\n- You know where we can go?\n- That's right, in one moment.\n- You want to"
  }
]


4. Ingress 配置

我们可配置 Ingress 来将模型服务对外透出,以用来对外部流量进行管理,保证模型可用性。为上面创建的服务配置 Ingress 流程如下:


  • 登录容器服务管理控制台,在左侧导航栏选择集群。
  • 在集群列表页面,单击目标集群名称,然后在左侧导航栏,选择网络 > 路由。
  • 在路由页面,单击创建 Ingress,在创建 Ingress 对话框配置路由。


更详细的 Ingress 配置策略可以参考:创建 Nginx Ingress[9]


填写如下信息



Ingress 创建成功后,可以 Ingress 配置的域名来对 Bloom 模型进行访问。


% curl -X POST http://deepspeed-bloom7b1.c78d407e5fa034a5aa9ab10e577e75ae9.cn-beijing.alicontainer.com/predictions/deepspeed -H "Content-type: text/plain" -d "I'm very thirsty, I need"
[
  {
    "generated_text":"I'm very thirsty, I need to drink!\nI want more water.\nWhere is the water?\nLet me have the water, let me have the water...\nWait!\nYou're the father aren't you?\nDo you have water?\nAre you going to let me have some?\nGive me the"
  }
]


总结和展望


通过上面的例子,我们展示了如何使用 Arena 部署了一个 Bloom7B1 模型的单机多卡推理服务,使用 DeepSpeed-Inference 的模型并行推理技术,在多张 GPU 上进行推理。除了 DeepSpeed-Inference,当前也有一些其他的大模型分布式推理方案,比如 FastTransformer + Triton。后续我们也将不断探索,希望能够通过云原生 AI 套件,结合大模型分布式推理方案,用更低的成本支持高性能、低延迟、可弹性伸缩的大模型推理服务。


如果您希望深入了解更多关于 ACK 云原生 AI 套件的信息,或者需要与我们就 LLM/AIGC 等相关需求进行交流,欢迎加入我们的钉钉群:33214567。


相关链接:

[1] 云原生 AI 套件开发者使用指南

https://help.aliyun.com/document_detail/336968.html?spm=a2c4g.212117.0.0.14a47822tIePxy

[2] Ingress 概述

https://help.aliyun.com/document_detail/198892.html?spm=a2c4g.181477.0.0.67d5225chicJHP

[3] DeepSpeed Inference

https://www.deepspeed.ai/tutorials/inference-tutorial/

[4] DJLServing

https://github.com/deepjavalibrary/djl-serving

[5] 创建托管 GPU 集群

https://help.aliyun.com/document_detail/171074.html?spm=a2c4g.171073.0.0.4c78f95a00Mb5P

[6] 安装云原生 AI 套件

https://help.aliyun.com/document_detail/201997.html?spm=a2c4g.212117.0.0.115b1cb6yDEAjy

[7] 控制台上传 OSS 文件

https://help.aliyun.com/document_detail/31886.htm?spm=a2c4g.276055.0.0.528e663f4mIHH9#concept-zx1-4p4-tdb

[8] 使用 OSS 静态存储卷

https://help.aliyun.com/document_detail/134903.html?spm=a2c4g.134903.0.0.132a4e96wLxEPu

[9] 创建 Nginx ingress

https://help.aliyun.com/document_detail/86536.html?spm=a2c4g.198892.0.0.3acd663fsFwQPY

相关实践学习
巧用云服务器ECS制作节日贺卡
本场景带您体验如何在一台CentOS 7操作系统的ECS实例上,通过搭建web服务器,上传源码到web容器,制作节日贺卡网页。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在文本生成中的应用与挑战自动化测试框架的搭建与实践
【8月更文挑战第27天】本文将深入探讨人工智能(AI)在文本生成领域的应用,包括其技术原理、实际应用案例以及面临的主要挑战。通过分析AI文本生成的工作原理和实际效果,我们将揭示这项技术如何改变内容创作、新闻撰写、对话系统等多个领域。同时,我们也将讨论AI文本生成带来的伦理和质量问题,以及如何平衡创新与风险,确保技术的健康发展。
|
4天前
|
机器学习/深度学习 人工智能 UED
OpenAI o1模型:AI通用复杂推理的新篇章
OpenAI发布了其最新的AI模型——o1,这款模型以其独特的复杂推理能力和全新的训练方式,引起了业界的广泛关注。今天,我们就来深入剖析o1模型的特点、背后的原理,以及一些有趣的八卦信息。
135 73
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
赋能百业:多模态处理技术与大模型架构下的AI解决方案落地实践
【9月更文挑战第4天】赋能百业:多模态处理技术与大模型架构下的AI解决方案落地实践
赋能百业:多模态处理技术与大模型架构下的AI解决方案落地实践
|
1天前
|
人工智能 云栖大会
AI Infra的前沿技术与应用实践 | 2024云栖大会预告
AI Infra的前沿技术与应用实践 | 2024云栖大会
|
10天前
|
人工智能 自然语言处理 自动驾驶
【通义】AI视界|马斯克亲自辟谣:xAI不可能在特斯拉的推理计算机上运行
本文精选了24小时内的重要科技新闻,包括马斯克辟谣xAI不会运行在特斯拉计算机上、谷歌发布AlphaProteo AI模型、百度贴吧“弱智吧”成为AI训练佳选、荣耀推出跨应用智能体以及苹果即将在iOS 18.2中加入图像生成功能。更多内容请访问通义官网体验。
|
13天前
|
人工智能 自然语言处理 算法
揭秘AI写作助手:技术原理与应用实践
在数字化浪潮的推动下,人工智能(AI)正逐步渗透到我们工作和生活的方方面面。本文将深入探讨AI写作助手的技术原理及其在不同场景的应用实例,旨在揭示这项技术如何助力内容创作、提升效率和质量。通过分析其背后的算法、数据处理方式以及实际运用效果,读者可以获得对AI写作工具更全面的认识,并了解如何利用这些工具优化自身的写作流程。
|
15天前
|
人工智能 JSON 自然语言处理
你的Agent稳定吗?——基于大模型的AI工程实践思考
本文总结了作者在盒马智能客服的落地场景下的一些思考,从工程的角度阐述对Agent应用重要的稳定性因素和一些解法。
|
24天前
|
人工智能 分布式计算 数据处理
Big Data for AI实践:面向AI大模型开发和应用的大规模数据处理套件
文叙述的 Big Data for AI 最佳实践,基于阿里云人工智能平台PAI、MaxCompute自研分布式计算框架MaxFrame、Data-Juicer等产品和工具,实现了大模型数据采集、清洗、增强及合成大模型数据的全链路,解决企业级大模型开发应用场景的数据处理难题。
|
26天前
|
人工智能 分布式计算 架构师
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI技术:从理论到实践
【8月更文挑战第31天】本文将深入浅出地介绍AI技术的基本原理,并通过实例演示如何将理论知识应用于实际编程中。我们将从基础的机器学习模型开始,逐步深入到深度学习和神经网络,最后通过一个具体的代码示例来展示AI技术的实际应用。无论你是AI技术的初学者还是有一定基础的开发者,都能在本文中找到有价值的信息。