一口气学完《三体 I》,拍张照就能让AI开发应用,这是钉钉「/」的首份开箱评测(1)

简介: 一口气学完《三体 I》,拍张照就能让AI开发应用,这是钉钉「/」的首份开箱评测

科幻电影《银翼杀手》中有一个经典片段:男主角 Rick Deckard 为了追踪目标嫌疑人,需要在屏幕上放大一张照片。但是,他并没有使用鼠标,而是通过自然对话的形式向显示器下达了口头命令。



这个电影上映于 1982 年,距今已经 41 年。在这四十多年的时间里,通过语言控制设备已经逐步变成了现实。起初,机器能够听懂的语言只是简单的「打开电视」「放大声音」…… 如今,这一范围扩大到了各种复杂指令。人们的生活、生产方式都在被 AI 重塑。


过去,如果你想写一篇营销策划,你可能先要阅读冗长的产品材料,把自己手动提炼的要点编辑出来,然后整理成一篇策划案。但如今,这些工作都被一条「/」简化了。


这个「/」来自钉钉。在前段时间的发布会中,我们看到了关于它的现场演示,比如图文创作、摘要提取、应用开发、专属问答机器人…… 覆盖多个行业的多个工作场景,因此很多人也叫它「魔法棒」。

那么,这个「魔法棒」到底好不好用?在拿到钉钉斜杠「/」的邀请码后,机器之心进行了开箱评测。


此次评测的内容包括多个方面,比如文档编辑能力(文生文、文生图、文生表格)、聊天消息摘要、应用开发、问答机器人等。评测的目的在于验证钉钉斜杠"/"这根「魔法棒」的实际使用体验是否符合之前 demo 和现场演示给人的预期,是否真能提高生产环境工作效率。


文档编辑:文字、表格生成游刃有余,图像生成仍需努力


文档是大部分工作者每天都要打交道的内容,涉及文生文、文生图、文生表格等实用方向。


在这部分测评中,考虑到钉钉服务于产业的性质,我们以一个具体的行业场景切入,看看钉钉能不能在实际业务中帮上忙。


假设我们要开一家奶茶店,但起初,我们并不清楚具体的准备过程。于是,我们新建了一个文档。输入「/」,文档界面弹出「向智能助手提问」的魔法棒。



点击这个魔法棒,我们可以看到它的各种用法,包括头脑风暴、写营销策划、职位描述、竞品分析、产品说明、合同等等。



如果你不确定自己的问题属于哪一类,直接在输入框中提问也是可以的。


第一个问题是:开一家奶茶店要做哪些准备工作?单击回车,魔法棒一口气列出了九条准备事项:



不过,这些条目并不详细,于是我们要求魔法棒继续写。可以看出,在续写的内容中,魔法棒补充了很多细节。



对于开店准备阶段的 SWOT 分析、营销方案撰写,魔法棒也能毫不费力地应对。这些内容足以让开店小白对即将要做的事情有一个基本概念。




入门之后,我们尝试用「魔法棒」生成一些实施过程中可能用到的材料,比如表格、宣传画。


首先,我们尝试让「魔法棒」罗列一个设备采购表格。可以看出,它可以自动给出需要采购的设备种类以及需要记录的相关信息(型号、数量、单价、总价等)。如果在生成结束后选择「继续写」,这个表格还可以继续扩展,帮我们进一步打开思路。



接下来,我们尝试生成一张宣传画:



可以看到,在文生图功能中,魔法棒通常会生成四幅图像供我们选择。我们可以选择其中一幅,也可以全选。作为国内首个将文生图落地到应用上的生产力工具,钉钉魔法棒在测试中的表现确实带来了一些惊喜。





不过,在生成的图像中,我们也发现了一些问题,比如某些风格总是生成失败(如水墨画)、图像中包含一些没有意义的文字、无法定制自己想要的文字等等。这会给使用者带来一些麻烦。




所以,总体来看,在文档编辑这类场景中,文生文、文生表格相对来看比较成熟,在提升生产效率方面成效比较显著。但文生图功能尚不稳定,有种「抽卡」的感觉。不过,相比于 Midjouney 等效果更好的文生图 AI 模型,钉钉「魔法棒」的 prompt 可以更简单,结合工作中的高频场景,使用起来也更方便。


聊天摘要:消除了「爬楼痛苦」,但也偶有瑕疵


在工作中,我们可能经常遇到这种场景:一小时没打开工作软件,群里的未读消息就堆积到了「99+」。为了避免错过重要信息,我们往往要花一段时间「爬楼」,从大量消息中筛选有用的、和自己相关的信息。


但现在,我们只需要在聊天框中输入「/」,「魔法棒」就可以自动把上百条信息总结出来。



同样以开奶茶店为例。假设我们在群里聊了一些开店事宜,聊天结束后想把重要信息总结下来。



在最后一个人发言结束后,输入「/」,选择「智能摘要」,魔法棒开始自动整理。



几秒钟后,「魔法棒」给出生成结果:



可以看出,「魔法棒」基本把三个人聊天的要点摘了出来,而且把最后的任务划分整理得非常清楚。


不过,在整理另外两轮的对话时我们也发现了一些问题,比如摘要过于笼统且无法以对话的形式进行修改、内容与发言人不匹配等。



比如在下面这个闲聊的例子中,「并称其为编辑部厨艺第二好的同学」主语应该是二狗。



此外,目前的「智能摘要」功能仅支持 1000 字以内的对话,如果讨论内容比较长,信息会有所损失。不过我们咨询钉钉同学后了解到,还好它选取消息范围的设定是「自后往前」,这也是为了防止实际使用中,由于前列消息占了大头,导致多次生成的效果会重复。这应该是一种工程化上的设计。


所以,总体来看,钉钉「魔法棒」的聊天消息摘要功能无论在闲聊还是工作相关的群聊中都能发挥一定作用,帮群聊成员省去总结、「爬楼」的时间。当然,该功能目前生成的内容也偶有瑕疵。



相关文章
|
4天前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
|
4天前
|
人工智能 运维 数据可视化
AI驱动操作系统服务评测报告
阿里云操作系统服务套件集成AI技术,提供集群健康、系统诊断、观测分析和OS Copilot等功能,助力高效管理。安装组件流程简便,系统观测与诊断功能强大,数据可视化效果佳,支持历史趋势分析。OS Copilot智能助手回答逻辑清晰,但部分问题需增强专业性。整体评价高,建议进一步优化错误提示、自动诊断及订阅服务记录,提升用户体验。
48 25
AI驱动操作系统服务评测报告
|
10天前
|
人工智能 算法 Serverless
《主动式智能导购AI助手构建》解决方案用户评测
在部署体验过程中,官方提供的详尽文档和图表帮助新手轻松上手,但环境变量设置等问题仍需改进。解决方案采用Multi-Agent架构,百炼大模型实现精准推荐,函数计算优化响应速度。生产环境部署指导全面,但仍需加强异常处理和面向新手的教学资源。整体架构清晰高效,建议完善数据流描述及Router Agent算法逻辑的阐述。
81 10
《主动式智能导购AI助手构建》解决方案用户评测
|
8天前
|
人工智能 运维 负载均衡
智能运维新时代:AI在云资源管理中的应用与实践
智能运维新时代:AI在云资源管理中的应用与实践
84 23
|
6天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
39 7
|
3天前
|
人工智能 缓存 安全
每一个大模型应用都需要一个 AI 网关|场景和能力
本次分享的主题是每一个大模型应用都需要一个 AI 网关|场景和能力。由 API 网关产品经理张裕(子丑)进行分享。主要分为三个部分: 1. 企业应用 AI 场景面临的挑战 2. AI 网关的产品方案 3. AI 网关的场景演示
|
5天前
|
人工智能 自然语言处理 搜索推荐
云端问道12期实操教学-构建基于Elasticsearch的企业级AI搜索应用
本文介绍了构建基于Elasticsearch的企业级AI搜索应用,涵盖了从传统关键词匹配到对话式问答的搜索形态演变。阿里云的AI搜索产品依托自研和开源(如Elasticsearch)引擎,提供高性能检索服务,支持千亿级数据毫秒响应。文章重点描述了AI搜索的三个核心关键点:精准结果、语义理解、高性能引擎,并展示了架构升级和典型应用场景,包括智能问答、电商导购、多模态图书及商品搜索等。通过实验部分,详细演示了如何使用阿里云ES搭建AI语义搜索Demo,涵盖模型创建、Pipeline配置、数据写入与检索测试等步骤,同时介绍了相关的计费模式。
|
5天前
|
人工智能 运维 监控
评测报告:AI驱动的操作系统服务套件体验
评测报告:AI驱动的操作系统服务套件体验
18 3
|
4天前
|
人工智能 数据安全/隐私保护 图形学
关于AI绘画优雅草央千澈整理的一份咒语(与AI对话提示词-应用于AI绘图和AI生成视频)-本文长期更新-本次更新2025年1月15日更新-长期更新建议点赞收藏
关于AI绘画优雅草央千澈整理的一份咒语(与AI对话提示词-应用于AI绘图和AI生成视频)-本文长期更新-本次更新2025年1月15日更新-长期更新建议点赞收藏
|
5天前
|
人工智能 安全 Java
AI 应用工程化专场
本次分享的主题是AI 应用工程化专场,由Spring AI Alibaba 开源项目负责人刘军分享。 1. 初识 Spring AI Alibaba开源项目 2. Spring AI Alibaba 深入讲解 3. Spring AI Alibaba RAG 开发实践 4. Spring AI Allbaba 未来规划 5. 数据 6. 问答

热门文章

最新文章