《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(1)

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(1)

数据分析是近年来非常热门的话题,在金融、电商、制造等很多行业里面都需要用到数据分析。数据分析的工具多种多样,比如有些同学会用Excel做数据分析,在银行里面可能用SAS软件做数据分析,还有通过Python或R等编程语言来做数据分析。


本文想向大家展示一下在PolarDB里如何用纯SQL做数据分析,下文提到的PolarDB特指PolarDB for PG。


SQL是一门非常强大的数据分析语言,它围绕着二维表数据结构,除了提供增删改查这些基础功能之外,还提供了非常完整的数据操作、数据查询和数据处理的功能。此外,在本文里也会向大家展示通过PolarDB的插件,可以实现用SQL做数据可视化展示。


本文不是专业的数据分析入门教程,所以不需要大家有数据分析的背景;并且为了方便演示,数据分析的过程也会简化;过程中还会介绍一些SQL的简单语法,所以不需要有太多的背景知识。


image.png


本文由三个部分组成:

1.首先介绍如何搭建PolarDB的数据分析环境,包括安装PolarDB和相关插件。

2.然后介绍简单的数据分析知识,并通过两个案例展示如何用SQL做数据分析,过程中会穿插一些SQ的基础知识。

3.最后总结本文涉及到的数据库相关的知识点。


环境搭建


我们就先来看一下怎么去搭建一个数据分析的环境。


image.png


(一)选择一款支持sixel图片格式的终端软件


我们最终是在命令行环境下,通过PSQL命令行来运行数据分析的SQL,以及做数据可视化的展示,因此需要终端软件能支持sixel这种图片格式。上图中罗列了几款常见操作系统中能支持显示图片的终端软件:

·如果用的是MacOS操作系统,推荐使用iTerm2;

·如果用的是Linux操作系统,可以使用xTerm;

·如果用的是Windows,可以试一下Mintty。


(二)安装PolarDB及插件


环境搭建的方法有两种,第一种是从源码开始一步一步的手工编译,选择这种方式的同学可以上图中的链接,分别去编译安装PolarDB和编译安装插件。第二种办法比较简单也比较推荐,如果电脑上面有安装Docker的话,可以直接使用预先编译好的Docker容器。


(三)测试运行


环境搭建好了之后,启动PSQL进入到运行SQL的环境。大家可以试一试运行上图的SQL:`select show_logo()`,如果能在屏幕上面看到PolarDB的logo图片,那就说明已经安装成功了。


数据分析简介


环境搭建好之后,我们就可以开始动手做数据分析了。一般情况下做数据分析要有很多的工作要做,整个过程比较繁琐并且冗长,但是我们可以大致把它分成以下四个步骤。


image.png


1.获取数据:把数据加载到数据分析工具里,即先获得要分析的数据,再将数据导入到工具中。这些待分析的数据可能是散落在互联网上,也可能是在某个文件里面,总而言之我们得先获得想要分析的数据。但是,刚拿到手的数据,格式通常是五花八门的,比如下载的网页格式通常是HTML,有些数据是XML格式,也有些是JSON格式,甚至还有一些数据格式是自定义的,不是通用的格式。为了能分析这些数据,得先把这些数据做格式转换,转换成方便处理的结构化格式(例如CSV、JSON等),然后导入到分析工具中。


2.处理数据:提取特征数据。在真实的工作场景中,除了数据格式不统一,数据的内容往往也参差不齐,很少能直接拿到一份干净又完整的数据。比如有些样本数据会缺失部分特征、有些数据是明显的异常数据。所以在开始分析之前,还需要对数据做进一步的处理,比如用默认值填充缺失的值、过滤掉明显重复的或者异常的数据,这个步骤一般也叫“特征工程”,需要耗费比较长的时间才能把数据整理好。


3.分析数据:有了干净整齐的数据,才能真正开始分析数据。到目前为止,数据分析的工作还是非常依赖人工的,需要大家根据自己的经验来观察数据。此时,通常会把数据以各种图表的形式展示出来,人工观察并总结一些特征,再根据这些特征选择复杂度合适的模型,然后开始训练并不断调优。


4.预测数据:最后,等模型训练出来后,就可以拿它来预测新的数据,然后根据结果不断优化和升级模型。看到这里大家可能会有个疑问,这好像是做机器学习的模型训练。没错,因为机器学习的本质其实就是通过数学建模来理解数据和分析数据,机器学习就是一种数据分析的方法。在后文的案例演示中,也会用到一些机器学习的算法,来帮助我们更好地理解和分析数据。


鸢尾花聚类分析案例


鸢尾花数据集是一个非常经典的数据集,通常是会用来做聚类或分类问题的入门数据。它包含150个样本,包括了三种鸢尾花,分别是山鸢尾、变色鸢尾和维吉尼亚鸢尾。每种花分别有50个样本,并且每个样本都包含花萼的长度与宽度,还有花瓣的长度与宽度,总共有四个特征,以及它属于哪种花。


image.png


如上图所示,第一个表格的第一行山鸢尾的花萼长度是5.1、花萼宽度是3.5、花瓣长度是1.4、花瓣宽度是0.2,这些信息我们拿到手之后,就可以基于它们去做一些分析,总结出这四个特征与鸢尾花品种的关系。


鸢尾花的数据大家可以在互联网上下载到,如果已经根据前面的安装指南成功安装了PolarDB以及相关插件,插件里面已经包含这份数据。


《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(2) https://developer.aliyun.com/article/1232910?groupCode=polardbforpg









相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
6天前
|
Cloud Native 关系型数据库 分布式数据库
让PolarDB更了解您--PolarDB云原生数据库核心功能体验馆
让PolarDB更了解您——PolarDB云原生数据库核心功能体验馆,由阿里云数据库产品事业部负责人宋震分享。内容涵盖PolarDB技术布局、开源进展及体验馆三大部分。技术布局包括云计算加速数据库演进、数据处理需求带来的变革、软硬协同优化等;开源部分介绍了兼容MySQL和PostgreSQL的两款产品;体验馆则通过实际操作让用户直观感受Serverless、无感切换、SQL2Map等功能。
|
2天前
|
运维 关系型数据库 分布式数据库
阿里云PolarDB:引领云原生数据库创新发展
阿里云PolarDB引领云原生数据库创新,2024云栖大会将分享其最新发展及在游戏行业的应用。PolarDB凭借弹性、高可用性、多写技术等优势,支持全球80多个站点,服务1万多家企业。特别是针对游戏行业,PolarDB助力Funplus等公司实现高效运维、成本优化和业务扩展。通过云原生能力,PolarDB推动游戏业务的全球化部署与快速响应,提升用户体验并保障数据安全。未来,PolarDB将继续探索AI、多云管理等前沿技术,为用户提供更智能的数据基础设施。
|
1月前
|
SQL 数据挖掘 数据库
这可能是最适合解决 SQL 数据分析痛点的编程语言
数据分析师常需处理各种数据操作,如过滤、分组、汇总等,SQL 在这些基本需求上表现得心应手。然而,面对本地文件数据或更复杂需求时,SQL 的局限性显现。SPL(Structured Process Language)则提供了更灵活的解决方案,无需数据库环境,直接从文件计算,代码简洁易懂,调试工具强大,极大提升了数据分析的效率和交互性。
|
2月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
4月前
|
存储 关系型数据库 分布式数据库
揭秘PolarDB:中国云原生数据库的超级英雄,如何颠覆传统数据存储?
在数字化时代,数据成为企业的核心资产,而云原生数据库则是推动企业转型的关键。PolarDB凭借其先进的存储计算分离架构,在性能、可靠性和易用性方面脱颖而出,成为国内领先的选择。它支持多种数据库引擎,提供多副本存储机制,并采用按量付费模式,有效降低管理和成本压力,助力企业实现高效、可靠的数字化转型。
90 1
|
5月前
|
SQL 数据挖掘
7张图总结:SQL 数据分析常用语句!
7张图总结:SQL 数据分析常用语句!
95 8
|
5月前
|
前端开发 Java JSON
Struts 2携手AngularJS与React:探索企业级后端与现代前端框架的完美融合之道
【8月更文挑战第31天】随着Web应用复杂性的提升,前端技术日新月异。AngularJS和React作为主流前端框架,凭借强大的数据绑定和组件化能力,显著提升了开发动态及交互式Web应用的效率。同时,Struts 2 以其出色的性能和丰富的功能,成为众多Java开发者构建企业级应用的首选后端框架。本文探讨了如何将 Struts 2 与 AngularJS 和 React 整合,以充分发挥前后端各自优势,构建更强大、灵活的 Web 应用。
72 0
|
5月前
|
SQL 数据挖掘 关系型数据库
SQL中的聚合函数:数据分析的强大工具
【8月更文挑战第31天】
208 0
|
5月前
|
SQL 数据采集 算法
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
291 0
|
5月前
|
SQL 数据挖掘 Serverless
SQL 窗口函数简直太厉害啦!复杂数据分析的超强利器,带你轻松攻克数据难题,快来一探究竟!
【8月更文挑战第31天】在数据驱动时代,高效处理和分析大量数据至关重要。SQL窗口函数可对一组行操作并返回结果集,无需分组即可保留原始行信息。本文将介绍窗口函数的分类、应用场景及最佳实践,助您掌握这一强大工具。例如,在销售数据分析中,可使用窗口函数计算累计销售额和移动平均销售额,更好地理解业务趋势。
110 0

热门文章

最新文章

相关产品

  • 云原生数据库 PolarDB