爆火论文打造《西部世界》雏形:25个AI智能体,在虚拟小镇自由成长

简介: 爆火论文打造《西部世界》雏形:25个AI智能体,在虚拟小镇自由成长

爆火论文打造《西部世界》雏形:25个AI智能体,在虚拟小镇自由成长

机器之心 2023-04-11 13:12 发表于辽宁

机器之心报道

机器之心编辑部

《西部世界》的游戏逐渐走进现实。

我们能否创造一个世界?在那个世界里,机器人能够像人类一样生活、工作、社交,去复刻人类社会的方方面面。


这种想象,曾在影视作品《西部世界》的设定中被完美地还原出来:众多预装了故事情节的机器人被投放到一个主题公园内,它们可以像人类一样行事,记得自己看到的东西、遇到的人、说过的话。每天,机器人都会被重置,回到它们的核心故事情节中。


《西部世界》剧照,左边人物为预装了故事情节的机器人。


再把想象力扩张一下:放在今天,如果我们想把 ChatGPT 这样的大语言模型变成西部世界的主人,又会怎么做?


在最近爆火的一篇论文中,研究者们成功地构建了一个「虚拟小镇」,25 个 AI 智能体在小镇上生存,它们不仅能够从事复杂的行为(比如举办情人节派对),而且这些行为比人类角色的扮演更加真实。




从《模拟人生》这样的沙盒游戏到认知模型、虚拟环境等应用,四十多年来,研究者们一直设想去创建能够实现可信人类行为的智能体。在这些设想中,由计算驱动的智能体的行为会与其过往经验一致,并对环境做出可信的反应。这种人类行为的模拟可以用现实社会现象填充虚拟空间和社区,训练「人们」去处理罕见但困难的人际关系、测试社会科学理论、制作理论和可用性测试的人类处理器模型、提供泛在计算应用和社交机器人动力,还能为在开放世界(Open World)中驾驭复杂人类关系的 NPC 角色奠定基础。


但人类行为的空间是巨大而复杂的。尽管在大型语言模型可以模拟单个时间点上的可信人类行为,但要想确保长期一致性,通用智能体需要一个架构来管理不断增长的记忆,因为新的互动、冲突和事件随着时间推移而出现和消退,同时还要处理多个智能体之间展开的级联社会动态。


如果一种方法能够在很长一段时间内检索相关的事件和互动,对这些记忆进行反思,并归纳和得出更高层次的推论,并应用这种推理来创建对当下和长期智能体行为有意义的计划和反应,那么距离梦想实现就不远了。


这篇新论文介绍了「Generative Agents」(生成式智能体),一种利用生成模型来模拟可信人类行为的智能体,并证明它们能产生可信的个人和突发群体行为的模拟:


  • 能够对自己、其他智能体和环境进行广泛的推断;
  • 能够创建反映自身特点和经验的日常计划,执行这些计划,做出反应,并在适当的时候重新计划;
  • 能够在终端用户改变环境或用自然语言命令它们时做出反应。



「Generative Agents」背后是一个新的智能体架构,能够存储、合成和应用相关的记忆,使用大型语言模型生成可信的行为。


举个例子,「Generative Agents」如果看到它们的早餐正在燃烧,会关掉炉子;如果浴室有人,会在外面等待;如果遇到想交谈的另一个智能体,会停下来聊天。一个充满「Generative Agents」的社会是以新兴的社会动态为标志的,在这个社会中,新的关系被形成,信息被扩散,并在智能体之间产生协调。


具体而言,研究者在这篇论文中公布了几点重要细节:


  • Generative Agents,是对人类行为的可信模拟,它以智能体不断变化的经验和环境为条件进行动态调整;
  • 一个新颖的架构,使 Generative Agents 有可能记住、检索、反思、与其他智能体互动,并通过动态演变的环境进行规划。该架构利用了大型语言模型的强大 prompt 能力,并对这些能力进行了补充,以支持智能体的长期一致性、管理动态演变的记忆能力,以及递归地产生更多的世代;
  • 两项评估(对照评估和端到端评估),确定架构各组成部分的重要性的因果关系,以及确定因记忆检索不当等原因而产生的故障;
  • 讨论了交互系统中 Generative Agents 的机会和伦理及社会风险。研究者认为应该对这些智能体进行调整,减轻用户形成寄生社会关系的风险,对其进行记录以减轻由 deepfake 和定制说服所带来的风险,并在设计过程中以补充而非取代人类利益相关者的方式进行应用。


文章一经发布,就引起了全网的热议。本就看好「AutoGPT」方向的 Karpathy 连连赞叹,认为「Generative Agents」比之前玩概念的「Open World」高了不是一点半点:



更有研究者断言,这项研究的发布,意味着「大型语言模型实现了新的里程碑式进展」:



「Generative Agents」行为及其交互


为了使「Generative Agents」更加具体化,该研究将它们实例化为沙盒世界中的角色。



25 个智能体居住在名为 Smallville 的小镇,每个智能体由一个简单的化身表示。所有的角色都可以:


  • 与别人和环境交流;
  • 记住并回忆它们所做的和观察到的事情;
  • 反思这些观察结果;
  • 制定每天的计划。



研究者用自然语言描述了每个智能体的身份,包括它们的职业以及与其他智能体的关系,并将这些信息作为种子记忆。举例来说,智能体 John Lin 有如下描述(本文截取了一段):


「John Lin 是一名药店店主,他乐于助人。他一直在寻找使客户更容易获得药物的方法。John Lin 的妻子是大学教授 Mei Lin ,它们和学习音乐理论的儿子 Eddy Lin 住在一起;John Lin 非常爱它的家人;John Lin 认识隔壁的老夫妇 Sam Moore 和 Jennifer Moore 好几年了……」


身份设定好之后,接着就是智能体如何与世界交互了。


在沙盒的每个 step 内,智能体都输出一个自然语言语句,以描述它们当前的动作,例如语句「Isabella Rodriguez 正在写日记」、「Isabella Rodriguez 正在查看邮件」等。然后这些自然语言被转化为影响沙盒世界的具体动作。动作以一组表情符号的形式显示在沙盒界面上,这些表情符号提供了动作的抽象表征。


为了实现这一点,该研究采用了一种语言模型,可以将动作转换为一组表情符号,这些表情符号出现在每个智能体化身上方的对话框中。例如,「Isabella Rodriguez 正在写日记」显示为 ,「Isabella Rodriguez 正在查看邮件」显示为 除此以外,通过单击智能体头像可以访问完整的自然语言描述。


智能体之间用自然语言进行交流,假如智能体意识到在其周围有其他智能体,它们会思考要不要走过去进行聊天。例如 Isabella Rodriguez 和 Tom Moreno 就即将到来的选举进行了对话:



除此以外,用户还可以指定智能体扮演什么角色,例如,指定其中一个智能体为记者,你就可以向该智能体咨询新闻方面的内容。


智能体与环境的交互


Smallville 小镇有许多公共场景,包括咖啡馆、酒吧、公园、学校、宿舍、房屋和商店。此外,每个公共场景还包括自身具有的功能以及对象,例如房子中有厨房、厨房中有炉子 (图 2)。在智能体的生活空间中还有床、桌子、衣柜、架子,以及浴室和厨房。



智能体可以在 Smallville 内随处走动,进入或离开一座建筑,导航前行,甚至去接近另一个智能体。智能体的移动由 Generative Agents 的架构和沙盒游戏引擎控制:当模型指示智能体移动到某个位置时,该研究会计算其在 Smallville 环境中到达目的地的步行路径,然后智能体开始移动。


此外,用户和智能体还可以影响该环境下其他物体的状态,例如,当智能体睡觉时床是被占用的,当智能体用完早餐冰箱可能是空的。最终用户还可以通过自然语言重写智能体环境。例如用户在 Isabella 进入浴室时将淋浴器状态设置为漏水,之后 Isabella 会从客厅找到工具并尝试修复漏水问题。


智能体一天的生活


从一段描述开始,智能体开始计划一天的生活。随着时间在沙盒世界中的流逝,智能体的行为随着彼此之间的交互以及与世界的互动、自身建立的记忆等逐渐改变。下图为药店店主 John Lin 一天的行为。



在这个家庭中,John Lin 早上七点第一个起床,然后刷牙、洗澡、穿衣服、吃早餐,接着在客厅的餐桌旁浏览新闻。早上 8 点,John Lin 的儿子 Eddy 也跟着起床准备上课。他临出门时和 John 进行对话,内容为:



Eddy 出发后不久,他的妈妈 Mei 也醒了过来,Mei 问起儿子,John 回忆起它们刚刚的对话,然后有了下面对话



社交能力


除此以外,「Generative Agents」还表现出社会行为的涌现。通过相互交互,「Generative Agents」在 Smallville 环境下交换信息,形成新的关系。这些社会行为是自然产生的,而不是预先设定好的。例如当智能体注意到对方的存在时,可能会进行一场对话,对话信息可以在智能体之间传播。


让我们看几个例子:


信息传播。当智能体注意到对方,它们可能会进行对话。当这样做时,信息可以从智能体传播到另一智能体。例如,在 Sam 和 Tom 在杂货店的对话中,Sam 告诉了 Tom 他在当地选举中的候选资格:



当天晚些时候,在 Sam 离开后,从另一个渠道听到消息的 Tom 和 John 讨论了 Sam 赢得选举的机会:



渐渐地,Sam 的候选资格成为了镇上的话题,有人支持他,也有人犹豫不决。


关系记忆。随着时间的推移,小镇上的智能体形成了新的关系,并记住了它们与其他智能体的互动。例如,Sam 一开始并不认识拉 Latoya Williams。在约翰逊公园散步时,Sam 碰到了 Latoya,互相做了自我介绍,Latoya 提到自己正在进行一个摄影项目:「我在这里为正在进行的一个项目拍摄照片。」在后来的互动中,Sam 与 Latoya 的互动表明了对这件事的记忆,Sam 问道:「Latoya,你的项目进展如何?」Latoya 回答:「进展得很好!」


协调能力。Isabella Rodriguez 经营一家 Hobbs 咖啡馆,打算在 2 月 14 日下午 5 点到 7 点举办一场情人节派对。从这个种子开始,当 Isabella Rodriguez 在 Hobbs 咖啡馆或其他地方遇到朋友和顾客时,就会发出邀请。13 日下午,Isabella 开始装饰咖啡馆。Isabella 的常客和密友 Maria 来到咖啡馆。Isabella 请求 Maria 帮忙布置派对,Maria 同意了。Maria 的角色描述是它喜欢 Klaus。那天晚上,Maria 邀请它的暗恋对象 Klaus 一起参加派对,Klaus 欣然接受。


情人节那天,包括 Klaus 和 Maria 在内的五名智能体在下午 5 点出现在 Hobbs 咖啡馆,它们享受着庆祝活动(图 4)。在这个场景中,终端用户只设置了 Isabella 举办派对的初始意图和 Maria 对 Klaus 的迷恋:传播信息、装饰、约对方、到达派对以及在派对上互动的社交行为 ,由智能体架构发起。




相关文章
|
人工智能 自然语言处理 Devops
云效 AI 智能代码评审体验指南
云效AI智能代码评审正式上线!在合并请求时自动分析代码,精准识别问题,提升交付效率与质量。支持自定义规则、多语言评审,助力研发效能升级。立即体验AI驱动的代码评审革新,让AI成为你的代码质量伙伴!
326 7
|
2月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
442 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
2月前
|
人工智能 自然语言处理 算法
【2025云栖大会】AI 搜索智能探索:揭秘如何让搜索“有大脑”
2025云栖大会上,阿里云高级技术专家徐光伟在云栖大会揭秘 Agentic Search 技术,涵盖低维向量模型、多模态检索、NL2SQL及DeepSearch/Research智能体系统。未来,“AI搜索已从‘信息匹配’迈向‘智能决策’,阿里云将持续通过技术创新与产品化能力,为企业构建下一代智能信息获取系统。”
414 9
|
2月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
748 6
|
2月前
|
人工智能 运维 安全
加速智能体开发:从 Serverless 运行时到 Serverless AI 运行时
在云计算与人工智能深度融合的背景下,Serverless 技术作为云原生架构的集大成者,正加速向 AI 原生架构演进。阿里云函数计算(FC)率先提出并实践“Serverless AI 运行时”概念,通过技术创新与生态联动,为智能体(Agent)开发提供高效、安全、低成本的基础设施支持。本文从技术演进路径、核心能力及未来展望三方面解析 Serverless AI 的突破性价值。
|
2月前
|
人工智能 运维 关系型数据库
云栖大会|AI时代的数据库变革升级与实践:Data+AI驱动企业智能新范式
2025云栖大会“AI时代的数据库变革”专场,阿里云瑶池联合B站、小鹏、NVIDIA等分享Data+AI融合实践,发布PolarDB湖库一体化、ApsaraDB Agent等创新成果,全面展现数据库在多模态、智能体、具身智能等场景的技术演进与落地。
|
2月前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
360 115
|
2月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1294 16
构建AI智能体:一、初识AI大模型与API调用