《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(4)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(4)

《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink  在 众安保险金融业务的应用(3) https://developer.aliyun.com/article/1228198



3. 反欺诈

image.png


上图是实时反欺诈特征应用的数据流图,它和金融实时特征服务的数据流图有些类似的一面,但也存在一些差异。这里的数据源除了会使用业务数据外,更关注的是用户行为数据和用户设备的数据。当然这些设备数据和行为数据都是在用户许可的前提下进行采集。  


这些数据经过 Kafka之后,也会进入 Flink 进行处理。反欺诈的数据主要是用一个图数据库来存储用户关系数据,对于需要历史数据的复杂特征计算,我们会在 Flink 里面用 bitmap 作为状态存储,结合 timerService 进行数据清理,使用 Redis 进行特征计算结果存储。  


GPS 的反欺诈特征是使用 TableStore 的多元索引和 lbs 函数的能力来进行位置识别的特征计算。反欺诈的关系图谱和关系社群会通过数据可视化的能力来提供给反欺诈人员进行个案调查。


image.png


我们把反欺诈特征归为 4 大类:  


第一类是位置识别类型,主要是基于用户的位置信息,加上 GeoHash 的算法,实现位置集聚特征的数据计算。举个例子,我们通过位置集聚特征,发现了一些可疑用户,然后再通过反欺诈调查查看这些用户的人脸识别的照片,发现了他们的背景很相似,都是在同一家公司进行业务申请。所有我们就可以结合位置类的特征,加上图像识别的 AI 能力来更精准地定位类似的欺诈行为;


第二类是设备关联类,主要是通过关系图谱来实现。通过获取同一个设备的关联用户的情况,可以比较快速地定位到一些羊毛党和简单的欺诈行为;


第三类是图谱关系,比如用户的登录、注册、自用、授信等场景,我们会实时抓取用户在这些场景的一些设备指纹、手机号、联系人等信息,来构造关系图谱的邻边关系。然后通过这样的邻边关系和用户关联的节点度数判断是否关联到一些黑灰名单用户来进行风险的识别;


第四类是基于社群发现算法实现的统计类的社群特征,通过判断社群的大小、社群里面这用户行为的表现,来提炼统计类的规则特征。


未来规划

未来众安保险首先会夯实时计算平台,实现实时数据的血缘关系的管理,并尝试 Flink + K8s 的方式实现资源的动态扩缩容。  


其次,众安保险希望能够基于 Flink + NubelaGraph 进行图谱平台化的建设,目前实时计算和离线计算是 Lambda 架构实现的,未来计划通过 Flink + Hologres 实现流批一体来尝试解决这个问题。  


最后,众安保险会尝试在风控的反欺诈业务场景使用 Flink ML 来实现在线机器学习,提升模型开发效率,快速的实现模型的迭代,赋能智能实时风控。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
16天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
17天前
|
机器学习/深度学习 传感器 自动驾驶
探索机器学习在图像识别中的创新应用
本文深入分析了机器学习技术在图像识别领域的最新进展,探讨了深度学习算法如何推动图像处理技术的突破。通过具体案例分析,揭示了机器学习模型在提高图像识别准确率、效率及应用场景拓展方面的潜力。文章旨在为读者提供一个全面的视角,了解当前机器学习在图像识别领域的创新应用和未来发展趋势。
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
86 11
|
27天前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
|
27天前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
51 4
|
28天前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
55 5
|
2月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
70 3
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
47 2
|
2月前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
28 2
|
21天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
49 0

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多