《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(下)——三、SQL性能调优(下)

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(下)——三、SQL性能调优(下)

更多精彩内容,欢迎观看:《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(下)——三、SQL性能调优(下):


6. 可视化执行计划

 

如图是执行计划可视化展示。

 

 示例语句

explain (format json,analyze true) select count(*) from test,testr where test.num1=testr.num2;


image.png

 

Postgres EXPLAIN Visualizer

http://tatiyants.com/pev/#/plans/new

 

7. 如何发现问题

 

自上而下,梳理痛点:自上而下梳理计划,确定时间开销大的算子。

查看代价,对比行数:查看比较代价估算的异常,对比估算行数和实际执行行数差异大的情况。

耗时算子,尽量避免:AP场景很少需要NestLoop、Sort+GroupByAgg。

具体算子,是否合理:是否有不必要的Motion算子,Join内外表顺序是否合适,Scan是否可以使用索引。

内存信息,调整参数:查看下盘情况,分析后适当调整statement_mem参数。

 

8. 通过索引提升查询性能

 

ADB PG支持如下索引类型及语句示例/适用场景:

 

B-tree:create index i1 on t1 using btree(c1),适用大多数场景,尤其对于点查询和更新等操作。

Bitmap:create index i2 on t2 using bitmap(c2),唯一值低于10w且低于总行数1/10,常与其他列有联合过滤条件。

GIN/GiST:全文检索,数组,JSON。

 

1) B-Tree索引优化建议,建议创建索引的场景

 

点查询的场景。

where条件的过滤效果较好的场景。

 

2) 不建议创建索引的场景

 

更新较多的表上不建议建索引,更新较为频繁的表上创建索引。

一个表的索引数最好不超过6个。

避免创建超过3列的组合索引。

避免创建重复的索引或具有相同前导列的索引。

 

3) 索引使用的建议

 

组合索引是从前向后匹配where条件的,不能命中前导列的where条件,不会使用该索引。

批量导入大量数据前可删除索引,导入数据后重建索引。

索引创建完成后,最好做一下统计信息收集。

 

9. 消除Redistribute Motion

 

在进行连接或聚集操作时,会根据数据分布情况添加分布式算子,对数据进行重分布Redistribute Motion或广播Broadcast Motion。分布式算子会占用大量的网络资源。如果能够通过建表和业务逻辑进行分布式算子的规避,则能够提升数据库查询性能。

 

示例假设有两张表,执行查询语句:

 

SELECT* FROM t1,t2 WHERE t1.a=t2.a;

t1表的分布键为t1.a,t2表的分布列是t2.b,会出现t2表的重分布

t1表的分布键为t1.a,t2表的分布列是t2.a,无需重分布直接Join。

image.png

 

10. 避免下盘

 

查询执行过程中,当集群内存不足时,数据库可能会选择将临时结果暂存到磁盘。由于磁盘操作相对内存访问缓慢,避免查询执行过程中的算子下盘,有助于提高查询效率。

算子下盘常见原因优化建议:调整statement mem(默认2GB)。

 

11. 锁的检测及处理

 

1) 死锁

 

死锁的检测和处理为数据库内部机制,无需手工干预,出现死锁会影响数据库吞吐量。

 

死锁检测方式:

 Local Deadlock Detector:用于检测单个计算节点内发生的死锁。

 Global Deadlock Detector:用于检测跨计算节点发生的分布式死锁。

 

示例

 

Session1

BEGIN;UPDATE t SET j=33 WHERE pk=3;UPDATE t SET j=33 WHERE pk=7;END;

  

Session2

BEGIN;UPDATE t SET j = 33 WHERE pk=7;UPDATE t SET j = 33 WHERE pk=3;END;

 

 当pk=3,pk=7落在单个计算节点上时,Local Deadlock Detector能检测到死锁;

当pk=3,pk=7落在不同计算节点上时,Global Deadlock Detector能检测到这种分布式死锁。

 

2) 常规锁

 

查看所有当前被加锁的对象,以及相应加锁的SQL

 

执行语句

select * from gp_toolkit.gp_locks_on_relation where lorrelname ='<table>';

  

12. 空间回收

 

为什么会空间膨胀

 

表中的数据被删除或更新后UPDATE/DELTE,物理存储层面并不会直接删除数据,而是标记这些数据不可见,所以会在数据页中留下很多“空洞”,在读取数据时,这些“空洞”会随数据页一起加载,拖慢数据扫描速度,需要定期回收删除的空间。

 

膨胀率判断方法

 

通过gp_toolkit.gp_bloat_diag视图,bdirelpages表示表实际占用Page数,bdiexppages表示表实际需要Page数,bdirelpages/bdiexppages > 4时,即可考虑进行空间回收。

 

回收操作可以通过vacuum和vacuum full

 

ü vacuum:回收时不锁表,但只标记删除空间可被再利用,不释放物理空间。

ü vacuum full:回收时锁表,表无法读写,回收物理空间,建议在维护窗口进行。

 

维护定期回收空间任务

https://help.aliyun.com/document_detail/59176.html

 

13. 避免数据倾斜

 

image.png 

 

1) 表现形式

 

数据存储倾斜,表现形式为数据在多个Segment节点上分布不均匀,存在如下影响:

 

磁盘存储水位不均匀,个别Segment节点磁盘使用过多,提前用满磁盘存储空间。

节点参与计算数据量不均匀,存在木桶效应。

 

2) 数据倾斜排查

 

用户控制台排查:

 

控制台基础信息项,会展示实例最大存储水位与实例存储总水位,存储数据倾斜时,两个数值将会差异过大。

 控制台监控与报警项,计算节点监控处会展示所有计算节点的空间使用量,存储数据倾斜时,节点磁盘空间使用量会差异过大。

 

通过SQL排查:

 

 通过控制台信息确定存在存储倾斜后,使用SQL排查倾斜的表。

 查询结果根据数据倾斜程度排序,当tb_balance_rate大于1.1时,认为该表存在数据倾斜。

 

排查同一张表在各个Segment节点下的存储数据量,执行如下语句:

select gp_segment_id, pg_size_pretty(pg_total_relation sizeltable name))from gp_dist_random('gp_id');

  

排查同一张表在各个Segment节点下的行数,执行如下语句:

select gp_segment_id,count(1) from table name group by gp segment id;

  

3) 避免数据倾斜

 

建表过程指定分布键或分布规律:

CREATE TABLE table_name (......) [DISTRIBUTED BY(column name,[...]) |DISTRIBUTED RANDOMLY |DISTRIBUTED REPLICATED];

  

修改分布键或分布规律:

ALTER TABLE [IF EXISTS] [ONLY] name SET WITH (REORGANIZE=true/false)| DISTRIBUTED BY (column_name,[...])|DISTRIBUTED RANDOMLY|DISTRIBUTED REPLICATED;

  

注意

修改分布键或分布规律,大多数情况都将会进行数据迁移,对于数据量过大的表,该操作会相对较久并且会锁表,无法查询

REORGANIZE=false仅在修改前后一致、或修改为随机分布时才会不进行数据重分布。

 

分布策略选择规则:

 

 小表(总行数低于1万)优先选择复制表分布策略(DISTRIBUTED REPLACATED)。

 大表优先选择参与Join/GroupBy计算的字段作为分布键Hash分布。

 若没有数据分布均匀的字段作为分布键使用,采用随机分布策略(DISTRIBUTED RANDOMLY)。

 

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
8月前
|
存储 JSON 关系型数据库
《Postgresql实战》笔记(二)
《Postgresql实战》笔记(二)
91 0
|
2月前
|
运维 Cloud Native 云计算
云原生之旅:Docker容器化实战
本文将带你走进云原生的世界,深入理解Docker技术如何改变应用部署与运维。我们将通过实际案例,展示如何利用Docker简化开发流程,提升应用的可移植性和伸缩性。文章不仅介绍基础概念,还提供操作指南和最佳实践,帮助你快速上手Docker,开启云原生的第一步。
|
2月前
|
监控 数据挖掘 OLAP
深入解析:AnalyticDB中的高级查询优化与性能调优
【10月更文挑战第22天】 AnalyticDB(ADB)是阿里云推出的一款实时OLAP数据库服务,它能够处理大规模的数据分析任务,提供亚秒级的查询响应时间。对于已经熟悉AnalyticDB基本操作的用户来说,如何通过查询优化和性能调优来提高数据处理效率,是进一步提升系统性能的关键。本文将从个人的角度出发,结合实际经验,深入探讨AnalyticDB中的高级查询优化与性能调优技巧。
134 4
|
5月前
|
运维 Cloud Native Devops
一线实战:运维人少,我们从 0 到 1 实践 DevOps 和云原生
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。
19384 30
|
4月前
|
运维 Cloud Native Docker
云原生技术入门:Docker容器化实战
【9月更文挑战第20天】本文将引导你走进云原生技术的世界,通过Docker容器化技术的实战演练,深入理解其背后的原理和应用。我们将一起探索如何在云平台上利用Docker简化部署、扩展和管理应用程序的过程,并揭示这一技术如何改变现代软件的开发和运维模式。
|
6月前
|
JavaScript 关系型数据库 API
Nest.js 实战 (二):如何使用 Prisma 和连接 PostgreSQL 数据库
这篇文章介绍了什么是Prisma以及如何在Node.js和TypeScript后端应用中使用它。Prisma是一个开源的下一代ORM,包含PrismaClient、PrismaMigrate、PrismaStudio等部分。文章详细叙述了安装PrismaCLI和依赖包、初始化Prisma、连接数据库、定义Prisma模型、创建Prisma模块的过程,并对比了Prisma和Sequelize在Nest.js中的使用体验,认为Prisma更加便捷高效,没有繁琐的配置。
234 7
Nest.js 实战 (二):如何使用 Prisma 和连接 PostgreSQL 数据库
|
5月前
|
Kubernetes Cloud Native Docker
云原生入门:Docker容器化部署实战
【8月更文挑战第31天】在数字化浪潮中,云原生技术成为企业转型的助推器。本文通过Docker容器化部署的实践案例,引导读者从零基础到掌握基础的云原生应用部署技能。我们将一起探索Docker的魅力,学习如何将一个应用容器化,并在云平台上运行起来,为深入云原生世界打下坚实基础。
|
6月前
|
Kubernetes Cloud Native 微服务
企业级容器部署实战:基于ACK与ALB灵活构建云原生应用架构
这篇内容概述了云原生架构的优势,特别是通过阿里云容器服务Kubernetes版(ACK)和应用负载均衡器(ALB)实现的解决方案。它强调了ACK相对于自建Kubernetes的便利性,包括优化的云服务集成、自动化管理和更强的生态系统支持。文章提供了部署云原生应用的步骤,包括一键部署和手动部署的流程,并指出手动部署更适合有技术背景的用户。作者建议在预算允许的情况下使用ACK,因为它能提供高效、便捷的管理体验。同时,文章也提出了对文档改进的建议,如添加更多技术细节和解释,以帮助用户更好地理解和实施解决方案。最后,展望了ACK未来在智能化、安全性与边缘计算等方面的潜在发展。水文一篇,太忙了,见谅!
|
8月前
|
Cloud Native 测试技术 数据库
【云原生之Docker实战】使用Docker部署flatnotes笔记工具
【5月更文挑战第17天】使用Docker部署flatnotes笔记工具
265 8
|
8月前
|
Cloud Native 关系型数据库 分布式数据库
【PolarDB开源】PolarDB数据迁移实战:平滑过渡至云原生数据库
【5月更文挑战第24天】本文介绍了如何平滑迁移数据至阿里云的云原生数据库PolarDB,包括迁移准备、策略选择、步骤、验证及示例代码。通过需求分析、环境准备和数据评估,选择全量、增量或在线迁移策略。使用数据导出、导入及同步工具(如DTS)完成迁移,并在完成后验证数据一致性、性能和安全。正确执行可确保业务连续性和数据完整性。
256 1