DAMO-YOLO项目原作解读:兼顾速度与精度的高效目标检测框架

简介: DAMO-YOLO项目原作解读:兼顾速度与精度的高效目标检测框架

目标检测是计算机视觉中的一个重要领域,它主要研究的是如何从输入的图像或者点云中定位出感兴趣物体的位置,在视觉 AI 的应用落地中发挥着基石的作用。现在市面上已经涌现了许多优秀易用的目标检测框架,但是在目标检测应用领域,仍然有以下几个重点问题没有解决:一是模型尺度单一,难以充分发挥用户的芯片算力。二是模型的多尺度检测能力弱,难以覆盖复杂多变的检测场景。三是模型的速度-精度曲线不够理想,在针对速度限制取舍模型时,会发现精度损失难以接受。

针对上述几个问题,结合阿里达摩院的技术积累,DAMO-YOLO 提出了自己的解法。DAMO-YOLO 中引入了 TinyNAS 技术,使得用户可以根据硬件算力进行低成本的检测模型定制,提高硬件使用效率并获得更高的精度。DAMO-YOLO 中还对检测模型的 neck、head 结构进行重新设计,创新性提出了 Heavy-Neck 模型设计范式,显著提升了模型的多尺度检测能力。最后,DAMO-YOLO 还提供了一套支持全尺度模型、异构鲁棒的蒸馏方案,实现无痛涨点,充分发挥模型潜力。此外,为了方便用户使用 DAMO-YOLO 解决自己的问题,还开源了多个工业应用模型。

机器之心最新一期线上分享邀请到了阿里巴巴达摩院算法工程师许贤哲,为大家解读他们近期的工作 DAMO-YOLO。


分享主题:DAMO-YOLO:兼顾速度与精度的高效目标检测框架

分享嘉宾:许贤哲,阿里巴巴达摩院算法工程师,天津大学通信与信息系统硕士,先后研究行人重识别、无监督学习、目标检测等方向,多次夺得 ICCV、CVPR 竞赛冠军,并担任 ECCV、CVPR 等会议审稿人。

分享摘要:DAMO-YOLO 是一个面向工业落地的目标检测框架,兼顾模型速度与精度,其训练的模型效果超越了目前的一众 YOLO 系列方法,并且仍然保持极高的推理速度。DAMO-YOLO 引入 TinyNAS 技术,使得用户可以根据硬件算力进行低成本的检测模型定制,提高硬件利用效率并且获得更高精度。DAMO-YOLO 还对检测模型中的 neck、head 结构设计,以及训练时的标签分配、数据增广等关键因素进行了优化,取得了精度和速度的全面提升。最后,DAMO-YOLO 提出了一套全尺度蒸馏方案,进一步实现全尺度模型的无痛涨点。具体细节可以参考我们的开源代码和技术报告。另外,为了方便用户使用 DAMO-YOLO 解决自己的问题,还开源了多个工业应用模型。

相关链接:

1)SOTA!模型平台项目主页链接:

https://sota.jiqizhixin.com/project/damo-yolo

2)论文链接:

https://arxiv.org/pdf/2211.15444v2.pdf

3)代码仓库:

https://github.com/tinyvision/damo-yolo

相关文章
|
机器学习/深度学习 并行计算 PyTorch
TensorRT部署系列 | 如何将模型从 PyTorch 转换为 TensorRT 并加速推理?
TensorRT部署系列 | 如何将模型从 PyTorch 转换为 TensorRT 并加速推理?
2138 0
|
算法 Go 文件存储
DAMO-YOLO: 兼顾速度与精度的新目标检测框架
我们团队最近开源了DAMO-YOLO!其效果达到了YOLO系列的SOTA,欢迎各位试用!​简介DAMO-YOLO是一个兼顾速度与精度的目标检测框架,其效果超越了目前的一众YOLO系列方法,在实现SOTA的同时,保持了很高的推理速度。DAMO-YOLO是在YOLO框架基础上引入了一系列新技术,对整个检测框架进行了大幅的修改。具体包括:基于NAS搜索的新检测backbone结构,更深的neck结构,精
1488 0
DAMO-YOLO: 兼顾速度与精度的新目标检测框架
|
Ubuntu
Ubuntu 20.04 多网卡路由规则配置
Ubuntu 20.04 多网卡路由规则配置
5549 0
|
6月前
|
数据采集 传感器 监控
数据治理,治到什么程度才算成功?
数据治理常被误认为是技术活,实则是涉及组织、流程、文化的系统工程。本文分享从0到1落地数据治理的5大关键动作,涵盖现状诊断、组织架构搭建、标准制定、工具选择与文化建设,助你避开90%的坑,真正发挥数据价值。
|
机器学习/深度学习 算法 计算机视觉
超越YOLOv10/11、RT-DETRv2/3!中科大D-FINE重新定义边界框回归任务
中科大研究团队提出了一种新型目标检测器D-FINE,通过重新定义边界框回归任务,实现超越YOLOv10/11和RT-DETRv2/3的性能。D-FINE采用细粒度分布细化(FDR)和全局最优定位自蒸馏(GO-LSD)技术,显著提高了定位精度和检测速度。在COCO数据集上,D-FINE-L/X分别达到54.0%/55.8%的AP,并在NVIDIA T4 GPU上以124/78 FPS运行。
600 13
|
运维 Kubernetes Cloud Native
云原生时代下,如何高效构建与部署微服务
【9月更文挑战第8天】随着云计算技术的飞速发展,云原生已成为现代软件架构的重要趋势。本文将深入浅出地介绍云原生概念、微服务架构的优势以及如何在云平台上高效构建和部署微服务。我们将通过实际的代码示例,展示在Kubernetes集群上部署一个简单的微服务应用的过程,帮助读者理解云原生环境下的微服务开发和运维实践。
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习之格式转换笔记(一):模型文件pt转onnx转tensorrt格式实操成功
关于如何将深度学习模型从PyTorch的.pt格式转换为ONNX格式,然后再转换为TensorRT格式的实操指南。
2810 0
深度学习之格式转换笔记(一):模型文件pt转onnx转tensorrt格式实操成功
|
11月前
|
人工智能
无影AI云电脑上新满血版DeepSeek R1!附免费使用教程
无影AI云电脑上新满血版DeepSeek R1!附免费使用教程
|
PyTorch API TensorFlow
Nvidia TensorRT系列01-基本介绍
NVIDIA TensorRT 是一个高性能的机器学习推理SDK,支持 TensorFlow、PyTorch 等框架。本文介绍了 TensorRT 的基本概念、安装指南、快速开始、案例和互补软件,如 NVIDIA Triton 推理服务器、DALI 和 TF-TRT。同时,文章还涵盖了 ONNX 支持、版本控制和弃用策略等内容。
446 1
|
Unix Linux 测试技术
C++封装详解——从原理到实践
C++封装详解——从原理到实践
887 0

热门文章

最新文章