狂揽两千星,速度百倍提升,高性能Python编译器Codon开源

简介: 狂揽两千星,速度百倍提升,高性能Python编译器Codon开源


这个高性能 Python 编译器具有支持 Python 众多语法、完美互通其他框架等优点。

众所周知,Python 是一门简单易学、具有强大功能的编程语言,在各种用户使用统计榜单中总是名列前茅。相应地,围绕 Python,研究者开发了各种便捷工具,以更好的服务于这门语言。

编译器充当着高级语言与机器之间的翻译官,不同版本的 Python 编译器已被开发出来,下面我们将为大家介绍一款新的高性能 Python 编译器:Codon。该项目上线短短几天,已收获 2.2k 星。


项目地址:https://github.com/exaloop/codon

作为高性能 Python 编译器,Codon 可将 Python 代码编译为本机机器代码,而无需任何运行时开销。在单线程上,Python 的典型加速大约为 10-100 倍或更多。Codon 的性能通常与 C/C++ 的性能相当。与 Python 不同,Codon 支持本机多线程,这可以使速度提高很多倍。Codon 可通过插件基础结构进行扩展,它允许用户合并新的库、编译器优化甚至关键字。


Codon 框架是完全模块化和可扩展的,允许无缝集成新模块、编译器优化、领域特定语言等,并积极为生物信息学和量化金融等多个领域开发新的 Codon 扩展。


Codon Pipeline

这个一经发布就疯狂揽星的编译器效果如何呢?下面我们来看看一些基准测试结果。


基准测试


以下是来自 Codon 基准测试套件的结果,比较了 Python、PyPy、C++ 和 Codon 在一系列任务和应用程序上的表现。


基准测试在以下设置上运行:


Python、PyPy、Codon 的对比


Python、PyPy、C++ 、Codon 的对比


几种语言的具体对比如下:


Codon 尽可能地遵循 CPython 语法、语义和 API,但在一些特殊情况下,考虑性能原因,Codon 与 CPython 会有些不同,例如 Codon 为 64 位 int,CPython 是任意宽度 int。在性能方面,CPython 的加速通常是 10-100 倍的加速。


虽然 Codon 确实提供了一个类似于 Numba 的 JIT 装饰器,但 Codon 通常是一个提前(ahead-of-time)编译器,可以将端到端程序编译为本机代码。它还支持编译更广泛的 Python 构造和库集。


PyPy 的目标是成为 CPython 的简易替代品,而 Codon 在一些地方有所不同,这些不同主要体现在消除动态运行时或虚拟机上,从而获得更好的性能。


Codon 通常生成与等效的 C 或 C++ 程序相同的代码,有时可以生成比 C/C++ 编译器更好的代码。原因有很多,例如更好的容器实现,Codon 不使用目标文件和内联所有库代码,或者不使用 C 执行的特定于 Codon 的编译器优化或 C++。


Codon 的编译过程实际上更接近 C++ 而不是 Julia。Julia 是一种动态类型语言,它执行类型推断作为优化,而 Codon 类型是提前检查整个程序。Codon 还试图通过采用 Python 的语法和语义来规避新语言的学习曲线。


常见问题解答


虽然 Codon 几乎支持 Python 的所有语法,但它并不是一个简单的替代品,大型代码库可能需要修改才能通过 Codon 编译器运行。例如,一些 Python 的模块还没有在 Codon 中实现,一些 Python 的动态特性是不允许的。Codon 编译器会生成详细的错误消息,以帮助识别和解决任何不兼容问题。Codon 支持无缝的 Python 互操作性,以处理需要特定 Python 库或动态性的情况。


我想使用 Codon,但我有一个大型 Python 代码库且不想移植,怎么办?


你可以通过 @codon.jit 装饰器来使用 Codon,这将只编译带注释的函数,并自动处理与 Codon 之间的数据转换。它还允许使用任何特定于 Codon 的模块或扩展,例如多线程。


与其他语言和框架的互通性如何?

互通性是 Codon 的优先事项。我们不希望使用 Codon 使用户无法使用现有的其他优秀框架和库。Codon 支持与 Python 和 C/C++ 的完全互通。


Codon 是否使用垃圾收集?


是的,Codon 使用了 Boehm 垃圾收集器。


Codon 不支持 Python 模块 X 或函数 Y?

虽然 Codon 涵盖了 Python 标准库的一个相当大的子集,但它还没有涵盖每个模块的每个函数。请注意,仍然可以通过 Python 调用缺少的函数 from python import。许多缺少 Codon 本地实现的函数(例如 I/O 或 OS 相关功能)通常不会实现 Codon 的实质性加速。


对于我的应用程序,Codon 并不比 Python 快?

大部分时间用在 C 语言实现的库代码中的应用程序通常不会在 Codon 中看到实质性的性能提升。同样地,受 I/O 或网络限制的应用程序在 Codon 中也会遇到相同的瓶颈。


对于我的应用程序,Codon 比 Python 慢?

如果是这样,请将 Codon 明显比 Python 慢的情况报告给问题跟踪器。


Codon 是免费的吗?


对于非生产用途,Codon 始终是免费的。用户可以免费将 Codon 用于个人、学术或其他非商业应用。


Codon 是开源的吗?


Codon 是根据商业源代码许可证 (BSL) 获得许可的,它的源代码是公开可用的,并且可以免费用于非生产用途。BSL 在技术上不是「开源」许可证,尽管在许多情况下你仍然可以像对待任何其他开源项目一样对待 Codon。重要的是,根据 BSL,每个版本的 Codon 都会在 3 年后转换到实际的开源许可证(特别是 Apache)。


相关文章
|
7月前
|
人工智能 自然语言处理 数据可视化
中国版“Manus”开源?AiPy:用Python重构AI生产力的通用智能体
AiPy是LLM大模型+Python程序编写+Python程序运行+程序可以控制的一切。
|
7月前
|
人工智能 并行计算 开发者
CUDA重大更新:原生Python可直接编写高性能GPU程序
NVIDIA在2025年GTC大会上宣布CUDA并行计算平台正式支持原生Python编程,消除了Python开发者进入GPU加速领域的技术壁垒。这一突破通过重新设计CUDA开发模型,引入CUDA Core、cuPyNumeric、NVMath Python等核心组件,实现了Python与GPU加速的深度集成。开发者可直接用Python语法进行高性能并行计算,显著降低门槛,扩展CUDA生态,推动人工智能、科学计算等领域创新。此更新标志着CUDA向更包容的语言生态系统转型,未来还将支持Rust、Julia等语言。
566 3
CUDA重大更新:原生Python可直接编写高性能GPU程序
|
8月前
|
程序员 测试技术 开发工具
怎么开发Python第三方库?手把手教你参与开源项目!
大家好,我是程序员晚枫。本文将分享如何开发Python第三方库,并以我维护的开源项目 **popdf** 为例,指导参与开源贡献。Popdf是一个PDF操作库,支持PDF转Word、转图片、合并与加密等功能。文章涵盖从fork项目、本地开发、单元测试到提交PR的全流程,适合想了解开源贡献的开发者。欢迎访问[popdf](https://gitcode.com/python4office/popdf),一起交流学习!
294 21
怎么开发Python第三方库?手把手教你参与开源项目!
|
10月前
|
人工智能 程序员 测试技术
我的开源项目达成1000 star里程碑!python-office招募开源小伙伴
大家好,这里是程序员晚枫。我的首个开源项目 **python-office** 在GitHub上达到了1000星!该项目始于2022年初,旨在帮助更多人快速入门Python。历经多个里程碑,包括被开源中国推荐、发布官网和操作视频等。目前下载量已达26万+,并被评为GitCode毕业项目。未来计划包括统一代码风格、增加功能、完善文档和单元测试,以及招募开源小伙伴共同维护。欢迎感兴趣的朋友私信我:**开源**。 ![Stargazers over time](https://starchart.cc/CoderWanFeng/python-office.svg)
223 11
我的开源项目达成1000 star里程碑!python-office招募开源小伙伴
|
11月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
332 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
11月前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
1196 9
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
693 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
11月前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
269 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
12月前
|
机器学习/深度学习 Rust 算法
Python环境管理的新选择:UV和Pixi,高性能Python环境管理方案
近期Python生态系统在包管理领域发生了重要变化,Anaconda调整商业许可证政策,促使社区寻找更开放的解决方案。本文介绍两款新一代Python包管理工具:UV和Pixi。UV用Rust编写,提供高性能依赖解析和项目级环境管理;Pixi基于Conda生态系统,支持conda-forge和PyPI包管理。两者分别适用于高性能需求和深度学习项目,为开发者提供了更多选择。
2630 2
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
552 3

推荐镜像

更多