忆海原识发布类脑计算平台,下一代AI突破口到来!(2)

简介: 忆海原识发布类脑计算平台,下一代AI突破口到来!

神经系统建模有哪些特点?我们发现:第一,生物神经元特性远比传统脉冲神经元特性丰富,第二,生物脑的机制远比传统人工神经网络的机制丰富。如此看来,理论、算法、模型将会持续快速更迭,并将成为常态因此,Ocean 需要满足灵活建模的需求


如左上图为一个生物神经元,它可大致分为突触、树突、胞体、轴突等几个部分。对应到模型上,每个部分都可以发生很复杂的机制,每一个机制对于最终表现出来的宏观认知效果都有不可忽视的重要作用为满足灵活建模需要,Ocean 也相应地将神经元模型划分为突触、树突、胞体等结构(可以进一步细分和扩展)。其中,突触也可以独立建模。再来看突触及突触可塑性,在生物学层面二者相关性很强,但又相对独立。因此 Ocean 将二者解耦,突触及突触可塑性可以分别建模,同时允许二者灵活组合。在前述基础上,为了运算的高效以及便于管理模型 / 代码,Ocean 将神经元、突触以群组为单位划分,并提供两种基础模型描述范式:容器模型描述范式、端口模型描述范式。下面着重介绍端口模型描述范式。一个端口模型包括模型主体和一至多个端口。其中,模型主体包括若干变量,用于表达模块 / 模型的状态(例如神经元的膜电位);端口表述了模块 / 模型与其它模块 / 模型的信息交互方式(可以用于实现突触连接)。通过端口机制,可以清晰地描述神经网络丰富而复杂的拓扑结构。针对基础模型提供以下端口(可以按需扩展):

  • Input - 输入端口,接受输入;
  • Output - 输出端口,产生输出;
  • Reference - 引用端口,允许模块 / 模型与其它模块 / 模型的变量相互引用;
  • Connection - 连接端口,可用于实现联接权重矩阵等功能;


如下图所示:



Ocean 提供了常用的神经元类型、突触类型、树突结构、可塑性机制等,并分别提供了对应的端口模型 / 容器群组。

进一步地,为了提高模型的组织能力,更灵活地管理模块,Ocean 还提出了抽象模块(AbstractModule);抽象模块可以对模型进行封装,通过代理输入端口(ProxyInput)、代理输出端口(ProxyOutput)等高级端口提供统一的输入、输出接口;抽象模块之间可以进行级联、嵌套,形成扁平结构、树状结构、多层级结构等,为模型的组织提供了灵活的管理及扩展能力,更加便于研发人员之间分工协作,将各自设计的模型组装成为更大的模型。



下面给出一些经典的神经环路拓扑结构案例:1. 神经元 - 突触 - 神经元 - 突触可塑性(上、下游神经元组一对一)


2. 神经元 - 突触 - 神经元 - 突触可塑性(上、下游神经元组多对一)


3. 神经元 - 突触 - 树突 - 神经元 - 突触可塑性


4. 模块嵌套及复用


这里介绍一个 Ocean 建模实例。下图为使用类脑神经网络针对 MNIST 手写字体进行识别。这个模型没有使用误差反传、梯度下降,只使用一定神经环路拓扑结构结合可塑性进行学习,就可以取得良好的识别效果我们还有更多的类脑神经网络模型以及应用案例,将会在以后的发布会上陆续向大家介绍。


忆海原识作为类脑计算以及机器人生态中的一份子,希望能够跟大家共同推动该领域发展,也希望大家能够持续关注。谢谢大家!


特别鸣谢:天安云谷、奇绩创坛、X-man 加速营、Nvidia Inception Program

相关文章
|
2月前
|
云安全 人工智能 安全
Dify平台集成阿里云AI安全护栏,构建AI Runtime安全防线
阿里云 AI 安全护栏加入Dify平台,打造可信赖的 AI
2767 166
|
2月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
3905 59
|
2月前
|
人工智能 供应链 搜索推荐
拔俗AI 智能就业咨询服务平台:求职者的导航,企业的招聘滤网
AI智能就业平台破解求职招聘困局:精准匹配求职者、企业与高校,打破信息壁垒。简历诊断、岗位推荐、技能提升一站式服务,让就业更高效。
|
2月前
|
人工智能 搜索推荐 大数据
拔俗AI一体化数字销售服务平台:让企业销售更智能、更高效
AI一体化数字销售服务平台融合AI与大数据,集成客户管理、智能推荐、自动化跟进等功能,实现销售全流程智能化。打破传统模式困局,提升转化率与效率,助力企业降本增效,抢占数字化转型先机。(238字)
|
2月前
|
存储 人工智能 搜索推荐
拔俗AI大模型教学平台:开启智能教育新时代
在AI与教育深度融合背景下,本文基于阿里云技术构建大模型教学平台,破解个性化不足、反馈滞后等难题。通过“大模型+知识图谱+场景应用”三层架构,实现智能答疑、精准学情分析与个性化学习路径推荐,助力教学质量与效率双提升,推动教育智能化升级。
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
人工智能 运维 NoSQL
拔俗AI大模型知识管理平台:让技术团队的“隐性知识”不再沉睡
技术团队常困于知识“存得住却用不好”。AI大模型知识管理平台如同为团队知识装上“智能大脑”,打通文档、代码、日志等碎片信息,实现智能检索、自动归集、动态更新与安全共享。它让新人快速上手、老手高效排障,把散落的经验变成可复用的智慧。知识不再沉睡,经验永不流失。
|
2月前
|
人工智能 自然语言处理 搜索推荐
营销智能体 AI 平台:技术人告别营销需求返工的实战手册
技术人常陷营销琐事:改文案、调接口、算数据。营销智能体AI平台并非“营销玩具”,而是为技术减负的利器。它将内容生成、投放优化、数据复盘自动化,无缝对接现有系统,提升效率2倍以上。落地需避三坑:勿贪全、勿求完美、紧扣业务需求。让技术专注核心,告别重复搬运。
|
2月前
|
人工智能 供应链 算法
AI 产业服务平台:打造产业智能化的“加速器”与“连接器”
AI产业服务平台整合技术、数据、算力与人才,为中小企业提供低门槛、一站式AI赋能服务,覆盖研发、生产、营销、管理全链条,助力产业智能化转型。
|
2月前
|
机器学习/深度学习 人工智能 监控
Java与AI模型部署:构建企业级模型服务与生命周期管理平台
随着企业AI模型数量的快速增长,模型部署与生命周期管理成为确保AI应用稳定运行的关键。本文深入探讨如何使用Java生态构建一个企业级的模型服务平台,实现模型的版本控制、A/B测试、灰度发布、监控与回滚。通过集成Spring Boot、Kubernetes、MLflow和监控工具,我们将展示如何构建一个高可用、可扩展的模型服务架构,为大规模AI应用提供坚实的运维基础。
280 0