科技云报道:生成式AI大模型,或将撼动云服务市场格局

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 云服务或将迎来价值重估

科技云报道原创。

随着ChatGPT、GPT-4、BARD等生成式AI大模型的爆火,云服务商围绕生成式AI的竞争日趋激烈。

image.png

微软将Azure的企业级功能与OpenAI的生成式AI模型功能相结合,发布了Azure OpenAI服务;

紧随其后,谷歌开放了AI大模型PaLM的API,并在谷歌企业级线上协作平台Google Workspace中引入了生成式AI功能。

近日,亚马逊云科技也推出了一项名为Amazon Bedrock的生成式AI云托管服务,用户可以通过API访问AI21Labs、Anthropic和Stability AI等AI初创公司的预训练基础模型,还提供对亚马逊云科技开发的基础模型系列Amazon Titan FMs的独家访问。

国内云服务厂商如:百度、阿里、京东、360等,也都密集宣布AI大模型技术进展以及类ChatGPT项目计划。

事实上,在这场由ChatGPT掀起的巨大声浪中,云计算扮演着十分重要的角色。

比如,ChatGPT的模型训练需要大量的数据资源和计算资源,云计算则为模型的开发和运行提供了强大的技术基础,这或许也是国内外众多云厂商选择跟进ChatGPT的原因所在。

随着云厂商们加速对ChatGPT的布局,未来云计算市场的竞争格局是否会被重新改写呢?

云服务商为何抢占生成式AI模型?

众所周知,以ChatGPT为代表的生成式AI技术十分耗钱,背后需要依靠强大的AI模型和海量数据,其所需要的云服务算力成本十分庞大。

以ChatGPT为例,据SimilarWeb数据,2023年1月ChatGPT官网总访问量为6.16亿次;据《Fortune》杂志,每次用户与ChatGPT互动,产生的算力云服务成本约0.01美元,如果使用总投资30.2亿元、算力500P的数据中心来支撑ChatGPT的运行,至少需要7-8个这样的数据中心,基础设施的投入都是以百亿计的。

但对于参与其中的微软、谷歌、亚马逊云科技、百度、阿里等厂商而言,其资金实力雄厚,足以覆盖投入大模型训练的云基建建设成本。

且随着未来大模型训练成本的进一步降低,云服务商也有其自身的优势。

相较于成本问题,生成式AI技术带来的前景不可小觑。

首先,AI大模型训练会为云厂商贡献大量的直接营收。

目前,云服务商的增速下降已经是摆在“明面上的事情了”。

据去年11月17日发布的阿里云季报显示,其增速已经降至4%,首次跌至个位数,在此之前其整体增速已经连续三季度低于15%了,创下了多年来新低;与此同时,腾讯云、华为云等前四大云厂商也都呈现出增速下跌的态势。

在此背景下,AI大模型训练无疑为其打开了新的空间。

据投资机构A16Z的研究数据发现,应用程序公司平均将约20%-40%的年收入,用于推理和定制化的微调。

这部分通常直接支付给云服务提供商,以获取实例或支付给第三方模型提供商,后者将大约一半的收入投入于云基础设施。

据此推算,生成式AI将有10%-20%的营收将直接流向云服务商。

另外,很多初创自有模型的企业,将会将其多达几十亿的风险投资中的大部分,用于支付给外部云服务商身上,以训练自有大模型。

对于云服务商厂商而言,这样的新兴市场无疑是特别值得期待的事情。

其次,AI大模型的使用将增加云服务商的市场竞争力。

从技术上看,对于NLP任务的场景,ChatGPT等AI大模型拥有更强的优势,能够智能化生成一系列文本内容,为用户提供更加便捷和高效的应用体验。

现在,各大云服务商也都推出了自己的AI大模型。

例如,亚马逊云科技的Amazon SageMaker是业内知名的基于云的机器学习开发平台,可以使得机器学习模型的部署更加简单和有效,并且在模型更新和部署方面较为灵活。

近日亚马逊云科技推出的生成式AI托管服务Amazon Bedrock,则进一步降低了用户使用生成式AI的门槛,让用户可以自由地选择其自研的基础大模型Amazon Titan(包含基于不同场景下的两个子模型TitanText和Titan Embeddings),以及AI21Labs、Anthropic和Stability AI等业内领先的第三方基础模型,用少量的数据就可以在基础模型上训练自己的定制模型。

通过API的方式访问基础模型,构建生成式AI应用,不必自己管理和运维底层基础设施。

image.png

谷歌Cloud AI Platform则在模型调试和优化上比较出色,同时可以灵活运用GPU并行计算实现对模型复杂度和架构的把握。

微软Azure的Cognitive Services主要应用于语言音频、计算视觉等方面,可以帮助企业在多个领域应用AI技术。

总体而言,AI应用已经成为了云服务商的重点发展领域,推出AI大模型可以满足客户需要的AI应用,提高云服务商的技术实力和市场竞争力。

最后,AI大模型能促进云服务商自身技术研发的深度发展。

生成式AI或将推动整个云服务行业的整体升级。

据OpenAI测算,自2012年以来,全球头部AI模型训练算力需求3-4个月翻一番,每年增长幅度高达10倍。

但根据摩尔定律,芯片计算性能每隔18-24个月才能翻一番,也就说芯片性能远远跟不上AI训练的算力需求。

云计算发展到今天,随着数据密集型场景越来越多。

比如,云计算从业务处理为中心转向数据处理为中心,CPU更多是在处理网络事务而不是用于计算,这相当于数据中心部署的很多服务器,被白白浪费了。

此时,解决之道是不再借助CPU,而是打造只为云计算服务的芯片,相当于云上的Windows系统。

为此,云厂商们也有了自己的想法。比如亚马逊云科技、微软、阿里等厂商均加大了自研芯片的力度,试图将AI引领下的“算力自由”牢牢掌控在自己手里。

例如,近日亚马逊云科技就宣布基于Amazon Inferentia2芯片的Amazon EC2 Inf2实例全面可用,打造最具成本效益的生成式AI云基础设施。

同时,亚马逊云科技基于Amazon Trainium芯片的新型Trn1n实例也正式可用,该实例将网络带宽提高了一倍,为训练生成式AI模型提供了更高的性能。

亚马逊云科技大中华区产品部总经理陈晓建在采访中举例道,在一个BERT环境中,如果基于英伟达的GPU实例并使用16个节点,简单的模型训练可能需要13个小时;但在内部测试中,基于亚马逊云科技自研的Trainium训练芯片,同样使用16个节点,只需要5个小时就可以完成训练。

同样,如果是基于NLP的大模型训练,需要8个GPU卡才能完成。

但是如果采用亚马逊云科技自研的Inferentia2,同样的负载只需要4个Inferentia2芯片即可,将用户整个硬件部署的环境、复杂性、和成本资金都降低一半。

云服务或将迎来价值重估

随着生成式AI与云产品的加速融合,以及产业进入“深度用云”时代,基于云计算的AI能力逐步得到了企业与行业的验证。

AI与云的结合能够降低企业上云的门槛,同时凭借AI的深度学习能力发挥数据价值,为企业搭建更好的“用云”路径。

具体来说,随着AI大模型技术的成熟,未来整个AI应用的创新门槛更低(成本更低、迭代更快),初创企业可以基于大模型创新而不是底层的芯片层和框架层创新。

同时,企业在用云时候更多会基于云服务厂商的大模型成熟度,来选择云厂商。

例如,Airbnb、GE等国际大企业,已经在使用亚马逊云科技底层的计算资源、训练框架、训练平台,来进行自己大模型训练。

通过Amazon SageMaker,用户可以实现从数据标注、大规模分布式训练以及到机器学习模型运维和在线推理的完整的端到端的任务。

其中,GE Healthcare创建了一个以改进传统的 X 射线成像技术(如超声波和 CT 扫描)为中心的深度学习算法库。

通过将患者报告数据、传感器数据和许多其它来源的各种数据集合并到扫描过程中,该算法将能够识别正常结果和异常结果之间的差异。

根据最近的一项调查,82%的医疗决策者说,使用数据改善了病人的护理,而63%的人报告说再入院率降低。

事实上,这一变化为原本竞争已经固化的云服务市场带来了重估机会。

从全球范围来看,AWS第一、Azure第二、阿里云第三的局面,已经持续了很长时间了,从IDC的数据来看,至少五年内这种3A格局未曾打破过,紧随其后分居第四、第五位的谷歌云、IBM,始终被前三名的巨头压制着。

从国内市场来看,阿里云一骑绝尘的领先者优势也已经保持多年,市场份额第一很难撼动。

但随着生成式AI大模型的出现,这一局面或将得到彻底变化,这是因为更接近前端的应用普及,对云服务下半程的竞争至关重要。

值得一提的是,微软的高层在宣布接入ChatGPT之后,曾对外表示:“ChatGPT或将带动微软云超越亚马逊云。”同样的话,百度CEO李彦宏也说了一遍,他表示文心一言带来的优势,将可能引导百度智能云进入市场第一。从两大巨头的高层表态来看,生成式AI技术或将给云行业带来新的大洗牌。

需要指出的是,当前生成式AI技术的落地还存在一些不确定性,能否确实成为产业互联网的全新应用也还需要时间验证。

有业内人士表示,ChatGPT仍是个不成熟的产品,目前炒作的意味更浓,未来能不能真正带来产业价值还是一个未知数。

可见,生成式AI离真正的产业化还有相当距离,至少还需要不少的时间,能否真的为云服务产品带来革命式变化,以及撼动云服务市场格局,还需要进一步观察。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

相关文章
|
8天前
|
人工智能 前端开发 小程序
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
|
1天前
|
机器学习/深度学习 人工智能 编解码
Inf-DiT:清华联合智谱AI推出超高分辨率图像生成模型,生成的空间复杂度从 O(N^2) 降低到 O(N)
Inf-DiT 是清华大学与智谱AI联合推出的基于扩散模型的图像上采样方法,能够生成超高分辨率图像,突破传统扩散模型的内存限制,适用于多种实际应用场景。
36 21
Inf-DiT:清华联合智谱AI推出超高分辨率图像生成模型,生成的空间复杂度从 O(N^2) 降低到 O(N)
|
3天前
|
数据采集 人工智能 搜索推荐
SocraticLM:通过 AI 提问引导学生主动思考,中科大与科大讯飞联合推出苏格拉底式教育大模型
SocraticLM 是由中科大和科大讯飞联合开发的苏格拉底式教学大模型,通过提问引导学生主动思考,提供个性化教学,显著提升教学效果。
27 9
SocraticLM:通过 AI 提问引导学生主动思考,中科大与科大讯飞联合推出苏格拉底式教育大模型
|
3天前
|
人工智能 Python
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
ImBD是一款由复旦大学、华南理工大学等机构联合推出的AI内容检测器,能够快速识别机器修订文本,适用于多种场景,显著提升检测性能。
25 8
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
48 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
1天前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
27 10
|
1天前
|
存储 人工智能 Serverless
7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型
人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。
|
8天前
|
人工智能 自然语言处理 前端开发
三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。
94 5
|
5天前
|
人工智能 供应链 安全
面向高效大模型推理的软硬协同加速技术 多元化 AI 硬件引入评测体系
本文介绍了AI硬件评测体系的三大核心方面:统一评测标准、平台化与工具化、多维度数据消费链路。通过标准化评测流程,涵盖硬件性能、模型推理和训练性能,确保评测结果客观透明。平台化实现资源管理与任务调度,支持大规模周期性评测;工具化则应对紧急场景,快速适配并生成报告。最后,多维度数据消费链路将评测数据结构化保存,服务于综合通用、特定业务及专业性能分析等场景,帮助用户更好地理解和使用AI硬件。
|
5天前
|
人工智能 自然语言处理 API
大模型编程(3)让 AI 帮我调接口
这是大模型编程系列第三篇,分享学习某云大模型工程师ACA认证免费课程的笔记。本文通过订机票和查天气的例子,介绍了如何利用大模型API实现函数调用,解决实际业务需求。课程内容详实,推荐感兴趣的朋友点击底部链接查看原文,完全免费。通过这种方式,AI可以主动调用接口并返回结果,极大简化了开发流程。欢迎在评论区交流实现思路。
32 1

热门文章

最新文章