【栈与队列】——栈的实现及应用

简介: 【栈与队列】——栈的实现及应用

目录


概念

栈的实现

初始化栈

入栈

出栈

获取栈顶元素

获取栈中有效元素个数

判断栈是否为空

栈的销毁

栈的应用

概念



栈是一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。


压栈


栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。


出栈


栈的删除操作叫做出栈。出数据也在栈顶。


总结起来,即栈是一种特殊的线性表,数据的插入以及删除操作都在栈顶,遵循后进先出的原则,即后进来的元素在进行出栈时先于早进来的元素。


1.png


栈的实现


这里我们发现,实现栈的话,用单链表或者数组都可以,单链表的头插与头删就满足后进先出,而数组即我们前面写过的顺序表,数组的尾插与尾删也满足后进先出的原则。这两种实现方式的时间复杂度都为O(1),并无什么差别,这里我们就用顺序表(数组)来实现。


// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack
{
  STDataType* _a;
  int _top;  // 栈顶
  int _capacity;  // 容量 
}Stack;


初始化栈

首先是初始化,这里我们先初始化为一个容量为4的栈,


// 初始化栈 
void StackInit(Stack* ps)
{
  assert(ps);
  ps->_a = (STDataType*)malloc(sizeof(STDataType)*4);
  ps->_top = 0;//栈顶元素的下一个
  ps->_capacity = 4;//栈的初始容量为4
}


这里需要注意的是,我们用_top来表示栈顶,_top== 0 和 top == -1是两个概念, 等于0时表示的是栈顶的下一个,等于-1时才表示栈顶。如下图:

_top=-1


2.gif


_top=0


3.gif


注意两者区别即可。


入栈

接下来是入栈,这里我们由于是写的一个能动态增长的栈,所以我们再进行入元素之前,要先判断这个栈是否满了,如果满了的话,就要进行扩容。


// 入栈 
void StackPush(Stack* ps, STDataType data)
{
  assert(ps);
  //判断增容
  //_top==_capacity说明已经满了,要进行扩容
  if (ps->_top == ps->_capacity)
  {
  //容量调整为原来的二倍
  STDataType* tmp = realloc(ps->_a, 2 * ps->_capacity * sizeof(STDataType));
  if (tmp == NULL)
  {
    perror("realloc fail");
    exit(-1);
  }
  ps->_a = tmp;
  ps->_capacity *= 2;//记得更新_capacity
  }
  //接下来才是入栈,先入元素,_top再++。(假如_top初始化是-1的话,要先++,再入元素)
  ps->_a[ps->_top] = data;
  ps->_top++;
}


出栈

出栈的实现也很简单,就相当于数组尾删,直接_top- - 即可,不过要注意的是,假如栈是个空栈,就不能进行出栈操作了。这里我们用assert进行判断


// 出栈 
void StackPop(Stack* ps)
{
  assert(ps);
  assert(!StackEmpty(ps));//判断是否为空
  ps->_top--;
}


获取栈顶元素

这里需要注意的是,由于我们一开始初始化的_top=0,它表示的是栈顶的下一个元素,原因上面也已经解释过了,所以我们获取栈顶元素时的下标实际为_top-1,不过注意空栈是不能获取栈顶元素的。


// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{
  assert(ps);
  assert(!StackEmpty(ps));
  return ps->_a[ps->_top - 1];
}


获取栈中有效元素个数

我们的_top其实就表示了我们的元素个数,因为我们是从0开始的,进一个元素之前就++了,假如是从-1开始的话,有效元素个数应为_top+1个。


// 获取栈中有效元素个数 
int StackSize(Stack* ps)
{
  assert(ps);
  return ps->_top;
}


判断栈是否为空

空栈就是_top等于0的情况下。


// 检测栈是否为空,如果为空返回true,否则false
bool StackEmpty(Stack* ps)
{
  assert(ps);
  return ps->_top == 0;
}


栈的销毁

释放malloc开辟的空间后,将所有元素置空置0


/
/ 销毁栈 
void StackDestroy(Stack* ps)
{
  assert(ps);
  free(ps->_a);
  ps->_capacity = ps->_top = 0;
  ps->_a = NULL;
}


栈的应用


有人可能会问,这个东西能干嘛啊,其实它的作用也很大的,就比如后面要学的一些知识,比如二叉树的层序遍历、快排的非递归实现等等,都会用得到,这里我们拿一道力扣上的题来举个应用例子。

题目如下:


4.png


对于该题,以我们的水平,假如不知道栈的话,做这个可能有点小麻烦,可能有人说用双指针遍历等等,其实都很难解决,但是用栈的特点,就很好做了。


我们直接左括号入栈,当遇到右括号时出栈进行匹配,这里就用到了后进先出的特点完美解决问题。如下:


5.gif


代码实现:(由于这里我们是用C语言写的,不像C++等语言可以直接调用库来使用,所以该题我们要自己创造出一个栈,就用我们上面写的,同时由于是字符串类型,所以记得将typedef int 改为char类型…)


这里由于为了不再重复的占用字数,我只将实现的代码写在下面,上面栈的实现直接拷贝到该函数上面即可。


void StackDestroy(Stack* ps)
{
  assert(ps);
  free(ps->_a);
  ps->_capacity = ps->_top = 0;
  ps->_a = NULL;
}
bool isValid(char * s){
    Stack st;
    //初始化栈
    StackInit(&st);
    while(*s)
    {
        //左括号入栈
        if(*s == '[' || *s=='('|| *s== '{')
        {
            StackPush(&st,*s);
            s++;
        }
        else
        {
            //假如没有左括号,空栈
            if(StackEmpty(&st))
            {
                return false;
            }
            //top存放栈顶元素
            char top=StackTop(&st);
            StackPop(&st);//出栈
            //进行对比
            if((*s==']'&& top !='[')
            ||(*s==')'&& top !='(')
            ||(*s=='}'&& top !='{'))
            {
                StackDestroy(&st);
                return false;
            }
            else
            {
                s++;
            }
        }
    }
    //栈不为空
    bool ret=StackEmpty(&st);
    StackDestroy(&st);
    return ret;
}



相关文章
|
3天前
|
存储 Java
【数据结构】优先级队列(堆)从实现到应用详解
本文介绍了优先级队列的概念及其底层数据结构——堆。优先级队列根据元素的优先级而非插入顺序进行出队操作。JDK1.8中的`PriorityQueue`使用堆实现,堆分为大根堆和小根堆。大根堆中每个节点的值都不小于其子节点的值,小根堆则相反。文章详细讲解了如何通过数组模拟实现堆,并提供了创建、插入、删除以及获取堆顶元素的具体步骤。此外,还介绍了堆排序及解决Top K问题的应用,并展示了Java中`PriorityQueue`的基本用法和注意事项。
16 5
【数据结构】优先级队列(堆)从实现到应用详解
|
14天前
|
存储 机器学习/深度学习
【数据结构】二叉树全攻略,从实现到应用详解
本文介绍了树形结构及其重要类型——二叉树。树由若干节点组成,具有层次关系。二叉树每个节点最多有两个子树,分为左子树和右子树。文中详细描述了二叉树的不同类型,如完全二叉树、满二叉树、平衡二叉树及搜索二叉树,并阐述了二叉树的基本性质与存储方式。此外,还介绍了二叉树的实现方法,包括节点定义、遍历方式(前序、中序、后序、层序遍历),并提供了多个示例代码,帮助理解二叉树的基本操作。
38 13
【数据结构】二叉树全攻略,从实现到应用详解
|
15天前
|
存储 Java 索引
【数据结构】链表从实现到应用,保姆级攻略
本文详细介绍了链表这一重要数据结构。链表与数组不同,其元素在内存中非连续分布,通过指针连接。Java中链表常用于需动态添加或删除元素的场景。文章首先解释了单向链表的基本概念,包括节点定义及各种操作如插入、删除等的实现方法。随后介绍了双向链表,说明了其拥有前后两个指针的特点,并展示了相关操作的代码实现。最后,对比了ArrayList与LinkedList的不同之处,包括它们底层实现、时间复杂度以及适用场景等方面。
31 10
【数据结构】链表从实现到应用,保姆级攻略
|
9天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
11天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
|
11天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
12天前
|
Java
【数据结构】栈和队列的深度探索,从实现到应用详解
本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
14 0
【数据结构】栈和队列的深度探索,从实现到应用详解
|
16天前
|
Linux C++ Windows
栈对象返回的问题 RVO / NRVO
具名返回值优化((Name)Return Value Optimization,(N)RVO)是一种优化机制,在函数返回对象时,通过减少临时对象的构造、复制构造及析构调用次数来降低开销。在C++中,通过直接在返回位置构造对象并利用隐藏参数传递地址,可避免不必要的复制操作。然而,Windows和Linux上的RVO与NRVO实现有所不同,且接收栈对象的方式也会影响优化效果。
|
1月前
栈的几个经典应用,真的绝了
文章总结了栈的几个经典应用场景,包括使用两个栈来实现队列的功能以及利用栈进行对称匹配,并通过LeetCode上的题目示例展示了栈在实际问题中的应用。
栈的几个经典应用,真的绝了
|
1月前
|
负载均衡 网络协议 安全
DKDP用户态协议栈-kni
DKDP用户态协议栈-kni