量化合约及合约量化机器人系统开发(开发详细)丨量化合约及合约量化机器人开发源码及策略

简介:   量化交易策略大体上可以分为两类,一类是判断趋势进行高抛低吸的策略,即趋势策略;另一类是消除系统性的风险获取相对稳健收益的策略,即策略。

  量化交易策略大体上可以分为两类,一类是判断趋势进行高抛低吸的策略,即趋势策略;另一类是消除系统性的风险获取相对稳健收益的策略,即策略。

  自动交易机器人在云服务器上24小时运行。初始化设置参数之后,机器人将按照策略进行自动交易。达到设定条件自动买入或者卖出,无须长时间盯盘。

  机器人内置多种交易策略,满足不同的类型。

  void Calibration::_initMaps(){

  _featureInfo.clear();

  _opInfo.clear();

  _tensorMap.clear();

  //run mnn once,initialize featureMap,opInfo map

  //MNN提供了每个op计算的callback,一个计算前一个是计算后

  //计算前的callback完成的工作是为input tensor创建TensorStatistic对象;op info的填充op->input,output的映射

  MNN::TensorCallBackWithInfo before=&{

  _opInfo[info->name()].first=nTensors;

  if(Helper::gNeedFeatureOp.find(info->type())!=Helper::gNeedFeatureOp.end()){

  for(auto t:nTensors){开发需求及案例:MrsFu123

  if(_featureInfo.find(t)==_featureInfo.end()){

  _featureInfo[t]=std::shared_ptr(

  new TensorStatistic(t,_featureQuantizeMethod,info->name()+"__input"));

  }

  }

  }

  return false;

  };

  //计算后的callback完成的工作是为output tensor创建TensorStatistic对象;op info的填充op->input,output的映射

  MNN::TensorCallBackWithInfo after=[this](const std::vector<MNN::Tensor*>&nTensors,

  const MNN::OperatorInfo*info){

  _opInfo[info->name()].second=nTensors;

  if(Helper::gNeedFeatureOp.find(info->type())!=Helper::gNeedFeatureOp.end()){

  for(auto t:nTensors){

  if(_featureInfo.find(t)==_featureInfo.end()){

  _featureInfo[t]=

  std::shared_ptr(new TensorStatistic(t,_featureQuantizeMethod,info->name()));

  }

  }

  }

  return true;

  };

  _interpreter->runSessionWithCallBackInfo(_session,before,after);

  //遍历op,由op的<input/output index,input/output>加入到tensorMap

  for(auto&op:_originaleModel->oplists){

  if(_opInfo.find(op->name)==_opInfo.end()){

  continue;

  }

  for(int i=0;iinputIndexes.size();++i){

  _tensorMap[op->inputIndexes]=_opInfo[op->name].first;

  }

  for(int i=0;ioutputIndexes.size();++i){

  _tensorMap[op->outputIndexes]=_opInfo[op->name].second;

  }

  }

  if(_featureQuantizeMethod=="KL"){

  //set the tensor-statistic method of input tensor as THRESHOLD_MAX

  auto inputTensorStatistic=_featureInfo.find(_inputTensor);

  if(inputTensorStatistic!=_featureInfo.end()){

  inputTensorStatistic->second->setThresholdMethod(THRESHOLD_MAX);

  }

  }

  }

相关文章
|
1月前
|
编解码 网络协议 机器人
顶顶通电话机器人开发接口对接大语言模型之实时流TTS对接介绍
大语言模型通常流式返回文字,若一次性TTS会导致严重延迟。通过标点断句或流TTS可实现低延迟的文本到语音转换。本文介绍了电话机器人接口适配流TTS的原理及技术点,包括FreeSWITCH通过WebSocket流TTS放音,以及推流协议和旁路流对接的详细说明。
|
2月前
|
自然语言处理 算法 机器人
智能电话销售机器人源码搭建部署系统电话机器人源码
智能电话销售机器人源码搭建部署系统电话机器人源码
33 4
|
2月前
|
自然语言处理 机器人 语音技术
电销机器人源码搭建(各个版本机器人部署)
电销机器人源码搭建(各个版本机器人部署)
40 3
|
2月前
|
人工智能 自然语言处理 机器人
智能语音机器人底层系统设计逻辑机器人源码系统逻辑
简介: — 1 —智能客服背景智能语音客服机器人是在传统的客服系统基础上,集成了语音识别、语义理解、知识图谱、深度学习等多项智能交互技术,能准确理解用户的意图或提问,再根据丰富的内容和海量知识图谱,给予用户满意的回答。目前已广泛应用于金融、保险、汽车、房产、电商、政府等多个领域。
|
2月前
|
机器学习/深度学习 监控 机器人
量化交易机器人系统开发逻辑策略及源码示例
量化交易机器人是一种通过编程实现自动化交易决策的金融工具。其开发流程包括需求分析、系统设计、开发实现、测试优化、部署上线、风险管理及数据分析。示例中展示了使用Python实现的简单双均线策略,计算交易信号并输出累计收益率。
|
2月前
|
机器学习/深度学习 监控 算法
现货量化交易机器人系统开发策略逻辑及源码示例
现货量化交易机器人系统是一种基于计算机算法和数据分析的自动化交易工具。该系统通过制定交易策略、获取和处理数据、生成交易信号、执行交易操作和控制风险等环节,实现高效、精准的交易决策。系统架构可采用分布式或集中式,以满足不同需求。文中还提供了一个简单的双均线策略Python代码示例。
|
2月前
|
机器学习/深度学习 人工智能 运维
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
70 0
|
2月前
|
机器人 人机交互 语音技术
智能电销机器人源码部署安装好后怎么运行
销售打电销,其中90%电销都是无效的,都是不接,不要等被浪费了这些的精力,都属于忙于筛选意向客户,大量的人工时间都耗费在此了。那么,有这种新型的科技产品,能为你替代这些基本的工作,能为你提升10倍的电销效果。人们都在关心智能语音客服机器人如何高效率工作的问题,今天就为大家简单的介绍下:1、智能筛选系统:电销机器人目前已经达到一个真人式的专家级的销售沟通水平,可以跟客户沟通,筛选意向,记录语音和文字通话记录,快速帮助电销企业筛选意向客户,大大的节约了筛选时间成本和人工成本。2、高速运转:在工作效率上,人工电销员,肯定跟不上智能语音机器人,机器人自动拨出电话,跟客户交谈。电话机
105 0
|
3月前
|
人工智能 安全 机器人
Dify开发Agent对接钉钉机器人
这篇文章详细讲解了如何在Dify平台上开发一个Agent并与钉钉机器人集成,实现自动化消息处理和响应功能。
254 0
|
2月前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
208 64