java面试题(二十一)redis2

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 1.21 说一说Redis集群的应用和优劣势参考答案优势:Redis Cluster是Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的目的。劣势:Redis集群方案在扩展了Redis处理能力的同时,也带来了一些使用上的限制:1. key批量操作支持有限。如mset、mget,目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于执行mset、mget等操作可能存在于多个节点上所以不被支持。2. key事务操作支持有限。同理只支持

1.21 说一说Redis集群的应用和优劣势

参考答案

优势:

Redis Cluster是Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的目的。

劣势:

Redis集群方案在扩展了Redis处理能力的同时,也带来了一些使用上的限制:

  1. key批量操作支持有限。如mset、mget,目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于执行mset、mget等操作可能存在于多个节点上所以不被支持。
  2. key事务操作支持有限。同理只支持多key在同一节点上的事务操作,当多个key分布在不同的节点上时无法使用事务功能。
  3. key作为数据分区的最小粒度,因此不能将一个大的键值对象(如hash、list等)映射到不同的节点。
  4. 不支持多数据库空间。单机下的Redis可以支持16个数据库,集群模式下只能使用一个数据库空间,即DB0。
  5. 复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。

1.22 说一说hash类型底层的数据结构

参考答案

哈希对象有两种编码方案,当同时满足以下条件时,哈希对象采用ziplist编码,否则采用hashtable编码:

  • 哈希对象保存的键值对数量小于512个;
  • 哈希对象保存的所有键值对中的键和值,其字符串长度都小于64字节。

其中,ziplist编码采用压缩列表作为底层实现,而hashtable编码采用字典作为底层实现。

压缩列表:

压缩列表(ziplist),是Redis为了节约内存而设计的一种线性数据结构,它是由一系列具有特殊编码的连续内存块构成的。一个压缩列表可以包含任意多个节点,每个节点可以保存一个字节数组或一个整数值。

压缩列表的结构如下图所示:

该结构当中的字段含义如下表所示:

属性

类型

长度

说明

zlbytes

uint32_t

4字节

压缩列表占用的内存字节数;

zltail

uint32_t

4字节

压缩列表表尾节点距离列表起始地址的偏移量(单位字节);

zllen

uint16_t

2字节

压缩列表包含的节点数量,等于UINT16_MAX时,需遍历列表计算真实数量;

entryX

列表节点

不固定

压缩列表包含的节点,节点的长度由节点所保存的内容决定;

zlend

uint8_t

1字节

压缩列表的结尾标识,是一个固定值0xFF;

其中,压缩列表的节点由以下字段构成:

previous_entry_length(pel)属性以字节为单位,记录当前节点的前一节点的长度,其自身占据1字节或5字节:

  1. 如果前一节点的长度小于254字节,则“pel”属性的长度为1字节,前一节点的长度就保存在这一个字节内;
  2. 如果前一节点的长度达到254字节,则“pel”属性的长度为5字节,其中第一个字节被设置为0xFE,之后的四个字节用来保存前一节点的长度;

基于“pel”属性,程序便可以通过指针运算,根据当前节点的起始地址计算出前一节点的起始地址,从而实现从表尾向表头的遍历操作。

content属性负责保存节点的值(字节数组或整数),其类型和长度则由encoding属性决定,它们的关系如下:

encoding

长度

content

00 xxxxxx

1字节

最大长度为26 -1的字节数组;

01 xxxxxx bbbbbbbb

2字节

最大长度为214-1的字节数组;

10__bbbbbbbb ... ... ...

5字节

最大长度为232-1的字节数组;

11 000000

1字节

int16_t类型的整数;

11 010000

1字节

int32_t类型的整数;

11 100000

1字节

int64_t类型的整数;

11 110000

1字节

24位有符号整数;

11 111110

1字节

8位有符号整数;

11 11xxxx

1字节

没有content属性,xxxx直接存[0,12]范围的整数值;

字典:

字典(dict)又称为散列表,是一种用来存储键值对的数据结构。C语言没有内置这种数据结构,所以Redis构建了自己的字典实现。

Redis字典的实现主要涉及三个结构体:字典、哈希表、哈希表节点。其中,每个哈希表节点保存一个键值对,每个哈希表由多个哈希表节点构成,而字典则是对哈希表的进一步封装。这三个结构体的关系如下图所示:

其中,dict代表字典,dictht代表哈希表,dictEntry代表哈希表节点。可以看出,dictEntry是一个数组,这很好理解,因为一个哈希表里要包含多个哈希表节点。而dict里包含2个dictht,多出的哈希表用于REHASH。当哈希表保存的键值对数量过多或过少时,需要对哈希表的大小进行扩展或收缩操作,在Redis中,扩展和收缩哈希表是通过REHASH实现的,执行REHASH的大致步骤如下:

  1. 为字典的ht[1]哈希表分配内存空间如果执行的是扩展操作,则ht[1]的大小为第1个大于等于ht[0].used*2的2n。如果执行的是收缩操作,则ht[1]的大小为第1个大于等于ht[0].used的2n。
  2. 将存储在ht[0]中的数据迁移到ht[1]上重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。
  3. 将字典的ht[1]哈希表晋升为默认哈希表迁移完成后,清空ht[0],再交换ht[0]和ht[1]的值,为下一次REHASH做准备。

当满足以下任何一个条件时,程序会自动开始对哈希表执行扩展操作:

  1. 服务器目前没有执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于1;
  2. 服务器目前正在执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于5。

为了避免REHASH对服务器性能造成影响,REHASH操作不是一次性地完成的,而是分多次、渐进式地完成的。渐进式REHASH的详细过程如下:

  1. 为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表;
  2. 在字典中的索引计数器rehashidx设置为0,表示REHASH操作正式开始;
  3. 在REHASH期间,每次对字典执行添加、删除、修改、查找操作时,程序除了执行指定的操作外,还会顺带将ht[0]中位于rehashidx上的所有键值对迁移到ht[1]中,再将rehashidx的值加1;
  4. 随着字典不断被访问,最终在某个时刻,ht[0]上的所有键值对都被迁移到ht[1]上,此时程序将rehashidx属性值设置为-1,标识REHASH操作完成。

REHSH期间,字典同时持有两个哈希表,此时的访问将按照如下原则处理:

  1. 新添加的键值对,一律被保存到ht[1]中;
  2. 删除、修改、查找等其他操作,会在两个哈希表上进行,即程序先尝试去ht[0]中访问要操作的数据,若不存在则到ht[1]中访问,再对访问到的数据做相应的处理。

1.23 介绍一下zset类型底层的数据结构

参考答案

有序集合对象有2种编码方案,当同时满足以下条件时,集合对象采用ziplist编码,否则采用skiplist编码:

  • 有序集合保存的元素数量不超过128个;
  • 有序集合保存的所有元素的成员长度都小于64字节。

其中,ziplist编码的有序集合采用压缩列表作为底层实现,skiplist编码的有序集合采用zset结构作为底层实现。

其中,zset是一个复合结构,它的内部采用字典和跳跃表来实现,其源码如下。其中,dict保存了从成员到分支的映射关系,zsl则按分值由小到大保存了所有的集合元素。这样,当按照成员来访问有序集合时可以直接从dict中取值,当按照分值的范围访问有序集合时可以直接从zsl中取值,采用了空间换时间的策略以提高访问效率。

typedef struct zset {     dict *dict;  // 字典,保存了从成员到分值的映射关系;     zskiplist *zsl; // 跳跃表,按分值由小到大保存所有集合元素; } zset;

综上,zset对象的底层数据结构包括:压缩列表、字典、跳跃表。

压缩列表:

压缩列表(ziplist),是Redis为了节约内存而设计的一种线性数据结构,它是由一系列具有特殊编码的连续内存块构成的。一个压缩列表可以包含任意多个节点,每个节点可以保存一个字节数组或一个整数值。

压缩列表的结构如下图所示:

该结构当中的字段含义如下表所示:

属性

类型

长度

说明

zlbytes

uint32_t

4字节

压缩列表占用的内存字节数;

zltail

uint32_t

4字节

压缩列表表尾节点距离列表起始地址的偏移量(单位字节);

zllen

uint16_t

2字节

压缩列表包含的节点数量,等于UINT16_MAX时,需遍历列表计算真实数量;

entryX

列表节点

不固定

压缩列表包含的节点,节点的长度由节点所保存的内容决定;

zlend

uint8_t

1字节

压缩列表的结尾标识,是一个固定值0xFF;

其中,压缩列表的节点由以下字段构成:

previous_entry_length(pel)属性以字节为单位,记录当前节点的前一节点的长度,其自身占据1字节或5字节:

  1. 如果前一节点的长度小于254字节,则“pel”属性的长度为1字节,前一节点的长度就保存在这一个字节内;
  2. 如果前一节点的长度达到254字节,则“pel”属性的长度为5字节,其中第一个字节被设置为0xFE,之后的四个字节用来保存前一节点的长度;

基于“pel”属性,程序便可以通过指针运算,根据当前节点的起始地址计算出前一节点的起始地址,从而实现从表尾向表头的遍历操作。

content属性负责保存节点的值(字节数组或整数),其类型和长度则由encoding属性决定,它们的关系如下:

encoding

长度

content

00 xxxxxx

1字节

最大长度为26 -1的字节数组;

01 xxxxxx bbbbbbbb

2字节

最大长度为214-1的字节数组;

10__bbbbbbbb ... ... ...

5字节

最大长度为232-1的字节数组;

11 000000

1字节

int16_t类型的整数;

11 010000

1字节

int32_t类型的整数;

11 100000

1字节

int64_t类型的整数;

11 110000

1字节

24位有符号整数;

11 111110

1字节

8位有符号整数;

11 11xxxx

1字节

没有content属性,xxxx直接存[0,12]范围的整数值;

字典:

字典(dict)又称为散列表,是一种用来存储键值对的数据结构。C语言没有内置这种数据结构,所以Redis构建了自己的字典实现。

Redis字典的实现主要涉及三个结构体:字典、哈希表、哈希表节点。其中,每个哈希表节点保存一个键值对,每个哈希表由多个哈希表节点构成,而字典则是对哈希表的进一步封装。这三个结构体的关系如下图所示:

其中,dict代表字典,dictht代表哈希表,dictEntry代表哈希表节点。可以看出,dictEntry是一个数组,这很好理解,因为一个哈希表里要包含多个哈希表节点。而dict里包含2个dictht,多出的哈希表用于REHASH。当哈希表保存的键值对数量过多或过少时,需要对哈希表的大小进行扩展或收缩操作,在Redis中,扩展和收缩哈希表是通过REHASH实现的,执行REHASH的大致步骤如下:

  1. 为字典的ht[1]哈希表分配内存空间如果执行的是扩展操作,则ht[1]的大小为第1个大于等于ht[0].used*2的2n。如果执行的是收缩操作,则ht[1]的大小为第1个大于等于ht[0].used的2n。
  2. 将存储在ht[0]中的数据迁移到ht[1]上重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。
  3. 将字典的ht[1]哈希表晋升为默认哈希表迁移完成后,清空ht[0],再交换ht[0]和ht[1]的值,为下一次REHASH做准备。

当满足以下任何一个条件时,程序会自动开始对哈希表执行扩展操作:

  1. 服务器目前没有执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于1;
  2. 服务器目前正在执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于5。

为了避免REHASH对服务器性能造成影响,REHASH操作不是一次性地完成的,而是分多次、渐进式地完成的。渐进式REHASH的详细过程如下:

  1. 为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表;
  2. 在字典中的索引计数器rehashidx设置为0,表示REHASH操作正式开始;
  3. 在REHASH期间,每次对字典执行添加、删除、修改、查找操作时,程序除了执行指定的操作外,还会顺带将ht[0]中位于rehashidx上的所有键值对迁移到ht[1]中,再将rehashidx的值加1;
  4. 随着字典不断被访问,最终在某个时刻,ht[0]上的所有键值对都被迁移到ht[1]上,此时程序将rehashidx属性值设置为-1,标识REHASH操作完成。

REHSH期间,字典同时持有两个哈希表,此时的访问将按照如下原则处理:

  1. 新添加的键值对,一律被保存到ht[1]中;
  2. 删除、修改、查找等其他操作,会在两个哈希表上进行,即程序先尝试去ht[0]中访问要操作的数据,若不存在则到ht[1]中访问,再对访问到的数据做相应的处理。

跳跃表:

跳跃表的查找复杂度为平均O(logN),最坏O(N),效率堪比红黑树,却远比红黑树实现简单。跳跃表是在链表的基础上,通过增加索引来提高查找效率的。

有序链表插入、删除的复杂度为O(1),而查找的复杂度为O(N)。例:若要查找值为60的元素,需要从第1个元素依次向后比较,共需比较6次才行,如下图:

跳跃表是从有序链表中选取部分节点,组成一个新链表,并以此作为原始链表的一级索引。再从一级索引中选取部分节点,组成一个新链表,并以此作为原始链表的二级索引。以此类推,可以有多级索引,如下图:

跳跃表在查找时,优先从高层开始查找,若next节点值大于目标值,或next指针指向NULL,则从当前节点下降一层继续向后查找,这样便可以提高查找的效率了。

跳跃表的实现主要涉及2个结构体:zskiplist、zskiplistNode,它们的关系如下图所示:

其中,蓝色的表格代表zskiplist,红色的表格代表zskiplistNode。zskiplist有指向头尾节点的指针,以及列表的长度,列表中最高的层级。zskiplistNode的头节点是空的,它不存储任何真实的数据,它拥有最高的层级,但这个层级不记录在zskiplist之内。

1.24 如何利用Redis实现分布式Session?

参考答案

在web开发中,我们会把用户的登录信息存储在session里。而session是依赖于cookie的,即服务器创建session时会给它分配一个唯一的ID,并且在响应时创建一个cookie用于存储这个SESSIONID。当客户端收到这个cookie之后,就会自动保存这个SESSIONID,并且在下次访问时自动携带这个SESSIONID,届时服务器就可以通过这个SESSIONID得到与之对应的session,从而识别用户的身。如下图:

现在的互联网应用,基本都是采用分布式部署方式,即将应用程序部署在多台服务器上,并通过nginx做统一的请求分发。而服务器与服务器之间是隔离的,它们的session是不共享的,这就存在session同步的问题了,如下图:

如果客户端第一次访问服务器,请求被分发到了服务器A上,则服务器A会为该客户端创建session。如果客户端再次访问服务器,请求被分发到服务器B上,则由于服务器B中没有这个session,所以用户的身份无法得到验证,从而产生了不一致的问题。

解决这个问题的办法有很多,比如可以协调多个服务器,让他们的session保持同步。也可以在分发请求时做绑定处理,即将某一个IP固定分配给同一个服务器。但这些方式都比较麻烦,而且性能上也有一定的消耗。更合理的方式就是采用类似于Redis这样的高性能缓存服务器,来实现分布式session。

从上面的叙述可知,我们使用session保存用户的身份信息,本质上是要做两件事情。第一是保存用户的身份信息,第二是验证用户的身份信息。如果利用其它手段实现这两个目标,那么就可以不用session,或者说我们使用的是广义上的session了。

具体实现的思路如下图,我们在服务端增加两段程序:

第一是创建令牌的程序,就是在用户初次访问服务器时,给它创建一个唯一的身份标识,并且使用cookie封装这个标识再发送给客户端。那么当客户端下次再访问服务器时,就会自动携带这个身份标识了,这和SESSIONID的道理是一样的,只是改由我们自己来实现了。另外,在返回令牌之前,我们需要将它存储起来,以便于后续的验证。而这个令牌是不能保存在服务器本地的,因为其他服务器无法访问它。因此,我们可以将其存储在服务器之外的一个地方,那么Redis便是一个理想的场所。

第二是验证令牌的程序,就是在用户再次访问服务器时,我们获取到了它之前的身份标识,那么我们就要验证一下这个标识是否存在了。验证的过程很简单,我们从Redis中尝试获取一下就可以知道结果。

1.25 如何利用Redis实现一个分布式锁?

参考答案

何时需要分布式锁?

在分布式的环境下,当多个server并发修改同一个资源时,为了避免竞争就需要使用分布式锁。那为什么不能使用Java自带的锁呢?因为Java中的锁是面向多线程设计的,它只局限于当前的JRE环境。而多个server实际上是多进程,是不同的JRE环境,所以Java自带的锁机制在这个场景下是无效的。

如何实现分布式锁?

采用Redis实现分布式锁,就是在Redis里存一份代表锁的数据,通常用字符串即可。实现分布式锁的思路,以及优化的过程如下:

  1. 加锁:第一版,这种方式的缺点是容易产生死锁,因为客户端有可能忘记解锁,或者解锁失败。setnx key value第二版,给锁增加了过期时间,避免出现死锁。但这两个命令不是原子的,第二步可能会失败,依然无法避免死锁问题。setnx key value expire key seconds第三版,通过“set...nx...”命令,将加锁、过期命令编排到一起,它们是原子操作了,可以避免死锁。set key value nx ex seconds
  2. 解锁:解锁就是删除代表锁的那份数据。del key
  3. 问题:看起来已经很完美了,但实际上还有隐患,如下图。进程A在任务没有执行完毕时,锁已经到期被释放了。等进程A的任务执行结束后,它依然会尝试释放锁,因为它的代码逻辑就是任务结束后释放锁。但是,它的锁早已自动释放过了,它此时释放的可能是其他线程的锁。

想要解决这个问题,我们需要解决两件事情:

  1. 在加锁时就要给锁设置一个标识,进程要记住这个标识。当进程解锁的时候,要进行判断,是自己持有的锁才能释放,否则不能释放。可以为key赋一个随机值,来充当进程的标识。
  2. 解锁时要先判断、再释放,这两步需要保证原子性,否则第二步失败的话,就会出现死锁。而获取和删除命令不是原子的,这就需要采用Lua脚本,通过Lua脚本将两个命令编排在一起,而整个Lua脚本的执行是原子的。

按照以上思路,优化后的命令如下:

# 加锁 set key random-value nx ex seconds   # 解锁 if redis.call("get",KEYS[1]) == ARGV[1] then     return redis.call("del",KEYS[1]) else     return 0 end

基于RedLock算法的分布式锁:

上述分布式锁的实现方案,是建立在单个主节点之上的。它的潜在问题如下图所示,如果进程A在主节点上加锁成功,然后这个主节点宕机了,则从节点将会晋升为主节点。若此时进程B在新的主节点上加锁成果,之后原主节点重启,成为了从节点,系统中将同时出现两把锁,这是违背锁的唯一性原则的。

总之,就是在单个主节点的架构上实现分布式锁,是无法保证高可用的。若要保证分布式锁的高可用,则可以采用多个节点的实现方案。这种方案有很多,而Redis的官方给出的建议是采用RedLock算法的实现方案。该算法基于多个Redis节点,它的基本逻辑如下:

  • 这些节点相互独立,不存在主从复制或者集群协调机制;
  • 加锁:以相同的KEY向N个实例加锁,只要超过一半节点成功,则认定加锁成功;
  • 解锁:向所有的实例发送DEL命令,进行解锁;

RedLock算法的示意图如下,我们可以自己实现该算法,也可以直接使用Redisson框架。

1.26 说一说你对布隆过滤器的理解

参考答案

布隆过滤器可以用很低的代价,估算出数据是否真实存在。例如:给用户推荐新闻时,要去掉重复的新闻,就可以利用布隆过滤器,判断该新闻是否已经推荐过。

布隆过滤器的核心包括两部分:

  1. 一个大型的位数组;
  2. 若干个不一样的哈希函数,每个哈希函数都能将哈希值算的比较均匀。

布隆过滤器的工作原理:

  1. 添加key时,每个哈希函数都利用这个key计算出一个哈希值,再根据哈希值计算一个位置,并将位数组中这个位置的值设置为1。
  2. 询问key时,每个哈希函数都利用这个key计算出一个哈希值,再根据哈希值计算一个位置。然后对比这些哈希函数在位数组中对应位置的数值:
  • 如果这几个位置中,有一个位置的值是0,就说明这个布隆过滤器中,不存在这个key。
  • 如果这几个位置中,所有位置的值都是1,就说明这个布隆过滤器中,极有可能存在这个key。之所以不是百分之百确定,是因为也可能是其他的key运算导致该位置为1。

1.27 多台Redis抗高并发访问该怎么设计?

参考答案

Redis Cluster是Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的目的。

Redis集群采用虚拟槽分区来实现数据分片,它把所有的键根据哈希函数映射到0-16383整数槽内,计算公式为slot=CRC16(key)&16383,每一个节点负责维护一部分槽以及槽所映射的键值数据。虚拟槽分区具有如下特点:

  1. 解耦数据和节点之间的关系,简化了节点扩容和收缩的难度;
  2. 节点自身维护槽的映射关系,不需要客户端或者代理服务维护槽分区元数据;
  3. 支持节点、槽、键之间的映射查询,用于数据路由,在线伸缩等场景。

Redis集群中数据的分片逻辑如下图:

1.28 如果并发量超过30万,怎么设计Redis架构?

参考答案

Redis Cluster是Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的目的。

Redis集群采用虚拟槽分区来实现数据分片,它把所有的键根据哈希函数映射到0-16383整数槽内,计算公式为slot=CRC16(key)&16383,每一个节点负责维护一部分槽以及槽所映射的键值数据。虚拟槽分区具有如下特点:

  1. 解耦数据和节点之间的关系,简化了节点扩容和收缩的难度;
  2. 节点自身维护槽的映射关系,不需要客户端或者代理服务维护槽分区元数据;
  3. 支持节点、槽、键之间的映射查询,用于数据路由,在线伸缩等场景。

Redis集群中数据的分片逻辑如下图:

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
11天前
|
安全 架构师 Java
Java大厂面试高频:Collection 和 Collections 到底咋回答?
Java中的`Collection`和`Collections`是两个容易混淆的概念。`Collection`是集合框架的根接口,定义了集合的基本操作方法,如添加、删除等;而`Collections`是一个工具类,提供了操作集合的静态方法,如排序、查找、同步化等。简单来说,`Collection`关注数据结构,`Collections`则提供功能增强。通过小王的面试经历,我们可以更好地理解这两者的区别及其在实际开发中的应用。希望这篇文章能帮助你掌握这个经典面试题。
30 4
|
19天前
|
NoSQL 算法 Java
Java Redis多限流
通过本文的介绍,我们详细讲解了如何在Java中使用Redis实现三种不同的限流策略:固定窗口限流、滑动窗口限流和令牌桶算法。每种限流策略都有其适用的场景和特点,根据具体需求选择合适的限流策略可以有效保护系统资源和提高服务的稳定性。
43 18
|
11天前
|
监控 Dubbo Java
Java Dubbo 面试题
Java Dubbo相关基础面试题
|
7天前
|
存储 缓存 NoSQL
Redis 面试题
Redis 基础面试题
|
11天前
|
SQL Java 数据库连接
Java MyBatis 面试题
Java MyBatis相关基础面试题
|
11天前
|
存储 监控 算法
Java JVM 面试题
Java JVM(虚拟机)相关基础面试题
|
11天前
|
SQL 监控 druid
Java Druid 面试题
Java Druid 连接池相关基础面试题
|
11天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
1月前
|
NoSQL Java 关系型数据库
Liunx部署java项目Tomcat、Redis、Mysql教程
本文详细介绍了如何在 Linux 服务器上安装和配置 Tomcat、MySQL 和 Redis,并部署 Java 项目。通过这些步骤,您可以搭建一个高效稳定的 Java 应用运行环境。希望本文能为您在实际操作中提供有价值的参考。
148 26
|
1月前
|
Java
Java社招面试题:& 和 && 的区别,HR的套路险些让我翻车!
今日分享的主题是如何区分&和&&的区别,提高自身面试的能力。主要分为以下四部分。 1、自我面试经历 2、&amp和&amp&amp的不同之处 3、&对&&的不同用回答逻辑解释 4、彩蛋

热门文章

最新文章