FastDeploy完成实时扣图模型部署

简介: FastDeploy完成实时扣图模型部署

FastDeploy完成实时扣图模型部署


FastDeploy干啥的


  • 基于「AI模型和硬件」的低门槛部署工具箱。
  • 服务于开发者的最优部署实践。


能力


  • 模型:人脸检测、人脸识别、人像扣图、目标检测、目标分类、OCR等。
  • 硬件:支持x86 CPU、Nvida GPU、Jetson、ARM CPU、ARM NPU的部署。
  • 推理引擎:TensorRT、ONNXRuntime、Paddle Inference、Paddle Lite、RKNN

完整能力列表,见github:github.com/PaddlePaddl…

image.png

**### 待部署模型能力展示——实时扣图

image.png


1. Python + CPU部署流程


运行Demo,感受部署能力


1.安装FastDeploy的lib库 
2.准备实时扣图MODNet模型 和 推理示例代码
3.运行推理代码


API调用,集成到自己项目中


## 运行Demo,感受部署能力
# (1) 安装FastDeploy CPU库
!pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html -q
# (2)准备MODNet模型和推理示例代码
# 推理示例代码;(如果是自己调用API完成,这部分代码都可以不用下载)
# !git clone https://gitee.com/PaddlePaddle/FastDeploy.git
%cd FastDeploy/examples/vision/matting/modnet/python/
/home/aistudio/FastDeploy/examples/vision/matting/modnet/python
!pip list|grep fastdeploy
fastdeploy-python      0.2.0
# 下载提前转换好的推理模型和图像
!wget https://bj.bcebos.com/paddlehub/fastdeploy/modnet_photographic_portrait_matting.onnx
# !wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_matting_input.jpg
--2022-08-26 16:39:02--  https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_matting_input.jpg
正在解析主机 raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
正在连接 raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... 已连接。
已发出 HTTP 请求,正在等待回应... 200 OK
长度: 278476 (272K) [image/jpeg]
正在保存至: “test_lite_matting_input.jpg”
         test_lite_   0%[                    ]   1.34K   327 B/s    eta 14m 7s ^C
# CPU 推理预测,输出结果保存在FastDeploy/examples/vision/matting/modnet/python/visualized_result.jpg图像中
!python infer.py --model modnet_photographic_portrait_matting.onnx --image 1.jpg --device cpu
Visualized result save in ./visualized_result.jpg

#API调用,集成到自己项目中(需按FastDeploy模型文档要求,准备好部署模型;或者直接下载FastDeploy中已经提供好的模型)


(此处打开infer.py直接讲解就行。)


image.pngimage.png


2. Python + GPU部署流程


特别说明:


  1. GPU部署与CPU部署流程区别:
  • GPU部署,需要提前准备好CUDA>=11.2环境要求,CUCA版本需要按照FastDeploy软硬件要求来
  • aistudio上的GPU环境,目前只有A100 40G满足CUDA>=11.2要求
#安装FastDeploy-GPU版本
!pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
# 准备MODNet模型和推理示例代码
# 推理示例代码
!git clone https://github.com/PaddlePaddle/FastDeploy.git
%cd FastDeploy/examples/vision/matting/modnet/python/
# 下载提前转换好的推理模型和图像
# 注意:测试图像目前放在github上,wget有一些慢,如果自己有测试图像,可以选择跳过。
!wget https://bj.bcebos.com/paddlehub/fastdeploy/modnet_photographic_portrait_matting.onnx
!wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_matting_input.jpg
# GPU 推理预测,输出结果保存在FastDeploy/examples/vision/matting/modnet/python/visualized_result.jpg图像中
!python infer.py --model modnet_photographic_portrait_matting.onnx --image test_lite_matting_input.jpg --device gpu


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
6月前
|
存储 编译器 C语言
【C语言篇】数据在内存中的存储(超详细)
浮点数就采⽤下⾯的规则表⽰,即指数E的真实值加上127(或1023),再将有效数字M去掉整数部分的1。
568 0
|
Linux 数据安全/隐私保护 Windows
更换(Pypi)pip源到国内镜像
pip国内的一些镜像 阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.
243557 2
|
5月前
|
编解码 Dart 网络协议
Flutter如何玩转超低延迟RTSP/RTMP播放,跨平台视频流体验大升级,让你的应用秒变直播神器!
【9月更文挑战第3天】Flutter作为谷歌推出的跨平台移动UI框架,凭借高性能和丰富的生态系统广受好评。本文详细介绍如何在Flutter应用中实现低延迟的跨平台RTSP/RTMP播放,并提供具体示例代码。首先介绍了如何使用`flutter_vlc_player`播放RTSP流,然后讨论了优化视频播放以降低延迟的方法,包括调整播放器配置等。通过选用合适的播放器插件并进行优化,Flutter可在视频流播放领域提供卓越的用户体验。随着生态的发展,Flutter有望成为视频流媒体开发的首选框架。
537 6
|
关系型数据库 MySQL Docker
Docker - 运行 Mysql 容器后报错:[ERROR] --initialize specified but the data directory has files in it. Aborting.
Docker - 运行 Mysql 容器后报错:[ERROR] --initialize specified but the data directory has files in it. Aborting.
1635 0
Docker - 运行 Mysql 容器后报错:[ERROR] --initialize specified but the data directory has files in it. Aborting.
|
9月前
|
机器学习/深度学习 人工智能 数据可视化
太强!AI没有落下的腾讯出YOLO-World爆款 | 开集目标检测速度提升20倍,效果不减
太强!AI没有落下的腾讯出YOLO-World爆款 | 开集目标检测速度提升20倍,效果不减
763 0
|
9月前
|
弹性计算 Ubuntu
Ubuntu 20.04安装FTP服务
以阿里云ECS为服务器,搭建FTP服务并在本机使用FileZilla连接服务。
787 2
|
并行计算 数据可视化 Linux
FastDeploy 安装部署
FastDeploy 安装部署
1955 0
FastDeploy 安装部署
|
JavaScript 开发工具 C++
Qt 配置GitHub Copilot
欢迎来到我们的 QML & C++ 项目!这个项目结合了 QML(Qt Meta-Object Language)和 C++ 的强大功能,旨在开发出色的用户界面和高性能的后端逻辑。 在项目中,我们利用 QML 的声明式语法和可视化设计能力创建出现代化的用户界面。通过直观的编码和可重用的组件,我们能够迅速开发出丰富多样的界面效果和动画效果。同时,我们利用 QML 强大的集成能力,轻松将 C++ 的底层逻辑和数据模型集成到前端界面中。 在后端方面,我们使用 C++ 编写高性能的算法、数据处理和计算逻辑。C++ 是一种强大的编程语言,能够提供卓越的性能和可扩展性。我们的团队致力于优化代码,减少资
|
机器学习/深度学习 传感器 文字识别
【新知测评实验室】解谜扫描全能王——“智能高清滤镜”黑科技
扫描技术已经被广泛应用于如办公(文件、名片、发票)、学习(笔记、试卷)、个人生活(证件、照片)、商务(收据、发票)、法律(合同、证据)等等各个领域。然而,现实图像中常常会出现一系列模糊、阴暗、褶皱、污渍、光线、透字等问题,如下面是一张很常见的笔记照片,照片中的褶皱和版面弯曲严重影响了图像质量和可读性,经过传统扫描工具如打印机、扫描仪扫描后仍然难以到达实用性和可用性。近期,合合信息旗下扫描全能王全新上线了一款“智能高清滤镜”黑科技,。本篇文章将对此一探究竟,从深层原理和测试对比来揭开其神秘面纱。
|
达摩院 算法 计算机视觉
一键抹去瑕疵、褶皱:深入解读达摩院高清人像美肤模型ABPN(2)
一键抹去瑕疵、褶皱:深入解读达摩院高清人像美肤模型ABPN
540 1

热门文章

最新文章