Dragonfly 和 Nydus Mirror 模式集成实践

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 自 17 年开源以来,Dragonfly 被许多大规模互联网公司选用并投入生产使用,并在 18 年 10 月正式进入 CNCF,成为中国第三个进入 CNCF 沙箱级别的项目。2020 年 4 月,CNCF 技术监督委员会 *(TOC)* 投票决定接受 Dragonfly 作为孵化级别的托管项目。Dragonfly 多年生产实践经验打磨的下一代产品,它汲取了上一代 Dragonfly1.x[1] 的优点并针对已知问题做了大量的优化。

图片

文|戚文博 (花名:百蓦)

Dragonfly Maintainer蚂蚁集团软件工程师

图片

主要负责「基于 P2P 的文件以及镜像加速系统」。

本文 2175 字 阅读 15 分钟

PART. 1 背景

自 17 年开源以来,Dragonfly 被许多大规模互联网公司选用并投入生产使用,并在 18 年 10 月正式进入 CNCF,成为中国第三个进入 CNCF 沙箱级别的项目。2020 年 4 月,CNCF 技术监督委员会 (TOC) 投票决定接受 Dragonfly 作为孵化级别的托管项目。Dragonfly 多年生产实践经验打磨的下一代产品,它汲取了上一代 Dragonfly1.x[1] 的优点并针对已知问题做了大量的优化。

Nydus 作为 Dragonfly 的子项目优化了 OCIv1 镜像格式,并以此设计了一个用户态文件系统,使容器可以按需下载镜像,不再需要下载完整镜像即可启动容器。在最新版本中 Dragonfly 完成了和子项目 Nydus 的集成,让容器启动即可以按需下载镜像,减少下载量。也可以在传输过程中利用 Dragonfly P2P 的传输方式,降低回源流量并且提升下载速度。

PART. 2 实践

图片

注:如果没有可用的 Kubernetes 集群进行测试,推荐使用 Kind[2]。

安装 Dragonfly

基于 Kubernetes cluster 详细安装文档可以参考:

https://d7y.io/docs/next/getting-started/quick-start/kubernetes/

使用 Kind 安装 Kubernetes 集群

创建 Kind 多节点集群配置文件  kind-config.yaml ,配置如下:

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
- role: worker    
extraPortMappings:
- containerPort: 30950 
hostPort: 65001  
- role: worker

使用配置文件创建 Kind 集群:

kind create cluster --config kind-config.yaml

切换 Kubectl 的 context 到 Kind 集群:

kubectl config use-context kind-kind

Kind 加载 Dragonfly 镜像

下载 Dragonfly latest 镜像:

docker pull dragonflyoss/scheduler:latest
docker pull dragonflyoss/manager:latest
docker pull dragonflyoss/dfdaemon:latest

Kind 集群加载 Dragonfly latest 镜像:

kind load docker-image dragonflyoss/scheduler:latest
kind load docker-image dragonflyoss/manager:latest
kind load docker-image dragonflyoss/dfdaemon:latest

基于 Helm Charts

创建 Dragonfly P2P 集群

创建 Helm Charts 配置文件 charts-config.yaml 并且开启 Peer 的预取功能, 配置如下:

scheduler:  
replicas: 1  
metrics:    
enable: true  
config: 
verbose: true    
pprofPort: 18066
seedPeer:  replicas: 1  
metrics:    
enable: true  
config:    
verbose: true    
pprofPort: 18066    
download:      
prefetch: true
dfdaemon:  
hostNetwork: true  
config:    
verbose: true    
pprofPort: 18066   
metrics: :8000    
download:    
prefetch: true   
proxy:      
defaultFilter: 'Expires&Signature&ns'    
security:     
insecure: true     
tcpListen:      
listen: 0.0.0.0   
port: 65001   
registryMirror:   
dynamic: true    
url: https://index.docker.io   
proxies:    
- regx: blobs/sha256.*
manager: 
replicas: 1 
metrics:   
enable: true 
config:   
verbose: true  
pprofPort: 18066

使用配置文件部署 Dragonfly Helm Charts:

$ helm repo add dragonfly 
https://dragonflyoss.github.io/helm-charts/$ helm install --wait --create-namespace --namespace dragonfly-system dragonfly 
dragonfly/dragonfly 
-f
charts-config.yamlNAME: dragonflyLAST
DEPLOYED: Wed Oct 19 04:23:22
2022NAMESPACE: dragonfly-system
STATUS: deployedREVISION: 1TEST 
SUITE: None
NOTES:

1. Get the scheduler address by running these commands:  export SCHEDULER_POD_NAME=$(kubectl get pods --namespace dragonfly-system -l
"app=dragonfly,release=dragonfly,component=scheduler" -o jsonpath={.items[0].metadata.name})  export SCHEDULER_CONTAINER_PORT=$(kubectl
get pod --namespace dragonfly-system $SCHEDULER_POD_NAME -o jsonpath="{.spec.containers[0].ports[0].containerPort}")
kubectl --namespace dragonfly-system port-forward $SCHEDULER_POD_NAME 8002:$SCHEDULER_CONTAINER_PORT  echo "Visit http://127.0.0.1:8002 to use your scheduler"

2. Get the dfdaemon port by running these commands:  export DFDAEMON_POD_NAME=$(kubectl get pods
--namespace dragonfly-system -l
"app=dragonfly,release=dragonfly,component=dfdaemon" -o jsonpath={.items[0].metadata.name})  export DFDAEMON_CONTAINER_PORT=$
(kubectl get pod --namespace dragonfly-system $DFDAEMON_POD_NAME -o jsonpath="{
.spec.containers[0].ports[0].containerPort}")  You can use $DFDAEMON_CONTAINER_PORT as a proxy port in Node.

3. Configure runtime to use dragonfly:  https://d7y.io/docs/getting-started/quick-start/kubernetes/

检查 Dragonfly 是否部署成功:

$ kubectl get po -n dragonfly-systemNAME 
READY   STATUS    RESTARTS 
AGEdragonfly-dfdaemon-rhnr6 
1/1     Running   4 (101s ago)   3m27sdragonfly-dfdaemon-s6sv5  
1/1     Running   5 (111s ago)   3m27sdragonfly-manager-67f97d7986-8dgn8
1/1     Running   0              3m27sdragonfly-mysql-0             
1/1     Running   0              3m27sdragonfly-redis-master-0    
1/1     Running   0              3m27sdragonfly-redis-replicas-0      
1/1     Running   1 (115s ago)   3m27sdragonfly-redis-replicas-1      
1/1     Running   0              95sdragonfly-redis-replicas-2    
1/1     Running   0              70sdragonfly-scheduler-0        
1/1     Running   0              3m27sdragonfly-seed-peer-0          
1/1     Running   2 (95s ago)    3m27s

创建 Peer Service 配置文件 peer-service-config.yaml 配置如下:

apiVersion: v1
kind: Servicemeta
data:  name: peer  
namespace:
dragonfly-systemspec: 
type: NodePort  ports:    
- name: http    
nodePort: 30950      
port: 65001  
selector:  
app: dragonfly    
component: dfdaemon  
release: dragonfly

使用配置文件部署 Peer Service:

kubectl apply -f peer-service-config.yaml

Containerd 集成 Nydus

生产环境 Containerd 集成 Nydus 详细文档可以参考:

https://github.com/dragonflyoss/image-service/blob/master/docs/containerd-env-setup.md#nydus-setup-for-containerd-environment

下面例子使用 Systemd 管理 nydus-snapshotter 服务。

下载安装 Nydus 工具

下载 containerd-nydus-grpc 二进制文件, 下载地址为:

https://github.com/containerd/nydus-snapshotter/releases/latest 。

NYDUS_SNAPSHOTTER_VERSION=0.3.0w
get 
https://github.com/containerd/nydus-snapshotter/releases/download/v$NYDUS_SNAPSHOTTER_VERSION/nydus-snapshotter-v$NYDUS_SNAPSHOTTER_VERSION-x86_64.tgztar zxvf nydus-snapshotter-v$NYDUS_SNAPSHOTTER_VERSION-x86_64.tgz

安装 containerd-nydus-grpc 工具:

sudo cp nydus-snapshotter/containerd-nydus-grpc /usr/local/bin/

下载 nydus-imagenydusd 以及 nydusify 二进制文件, 下载地址为

https://github.com/dragonflyoss/image-service/releases/latest :

NYDUS_VERSION=2.1.0wget 
https://github.com/dragonflyoss/image-service/releases/download/v$NYDUS_VERSION/nydus-static-v
$NYDUS_VERSION-linux-amd64.tgztar zxvf nydus-static-v
$NYDUS_VERSION-linux-amd64.tgz

安装 nydus-imagenydusd 以及 nydusify 工具:

sudo cp nydus-static/nydus-image nydus-static/nydusd nydus-static/nydusify /usr/local/bin/

Containerd 集成

Nydus Snapshotter 插件

配置 Containerd 使用 nydus-snapshotter 插件, 详细文档参考:

https://github.com/dragonflyoss/image-service/blob/master/docs/containerd-env-setup.md#configure-and-start-containerd

首先修改 Containerd 配置在 /etc/containerd/config.toml 添加下面内容:

[proxy_plugins] 
[proxy_plugins.nydus]  
type = "snapshot"   
address = "/run/containerd-nydus/containerd-nydus-grpc.sock"
[plugins.cri] 
[plugins.cri.containerd]   
snapshotter = "nydus"  
disable_snapshot_annotations = false

重启 Containerd 服务:

sudo systemctl restart containerd

验证 Containerd 是否使用 nydus-snapshotter 插件:

$ ctr -a /run/containerd/containerd.sock plugin ls | grep nydusio.containerd.snapshotter.v1          nydus                    -              ok

Systemd 启动

Nydus Snapshotter 服务

Nydusd 的 Mirror 模式配置详细文档可以参考:

https://github.com/dragonflyoss/image-service/blob/master/docs/nydusd.md#enable-mirrors-for-storage-backend

创建 Nydusd 配置文件 nydusd-config.json,配置如下:

{  "device": {    "backend": {      "type": "registry",      "config": {        "mirrors": [          {            "host": "http://127.0.0.1:65001",            "auth_through": false,            "headers": {              "X-Dragonfly-Registry": "https://index.docker.io"            }          }        ],        "scheme": "https",        "skip_verify": false,        "timeout": 10,        "connect_timeout": 10,        "retry_limit": 2      }    },    "cache": {      "type": "blobcache",      "config": {        "work_dir": "/var/lib/nydus/cache/"      }    }  },  "mode": "direct",  "digest_validate": false,  "iostats_files": false,  "enable_xattr": true,  "fs_prefetch": {    "enable": true,    "threads_count": 10,    "merging_size": 131072,    "bandwidth_rate": 1048576  }}

复制配置文件至

 /etc/nydus/config.json 文件:

sudo mkdir /etc/nydus && cp nydusd-config.json /etc/nydus/config.json

创建 Nydus Snapshotter Systemd 配置文件 nydus-snapshotter.service , 配置如下:

[Unit]Description=nydus snapshotterAfter=network.targetBefore=containerd.service
[Service]Type=simpleEnvironment=HOME=/rootExecStart=/usr/local/bin/containerd-nydus-grpc --config-path /etc/nydus/config.jsonRestart=alwaysRestartSec=1KillMode=processOOMScoreAdjust=-999StandardOutput=journalStandardError=journal
[Install]WantedBy=multi-user.target

复制配置文件至

 /etc/systemd/system/ 目录:

sudo cp nydus-snapshotter.service /etc/systemd/system/

Systemd 启动 Nydus Snapshotter 服务:

$ sudo systemctl enable nydus-snapshotter$ sudo systemctl start nydus-snapshotter$ sudo systemctl status nydus-snapshotter● nydus-snapshotter.service - nydus snapshotter     Loaded: loaded (/etc/systemd/system/nydus-snapshotter.service; enabled; vendor preset: enabled)     Active: active (running) since Wed 2022-10-19 08:01:00 UTC; 2s ago   Main PID: 2853636 (containerd-nydu)      Tasks: 9 (limit: 37574)     Memory: 4.6M        CPU: 20ms     CGroup: /system.slice/nydus-snapshotter.service             └─2853636 /usr/local/bin/containerd-nydus-grpc --config-path /etc/nydus/config.json
Oct 19 08:01:00 kvm-gaius-0 systemd[1]: Started nydus snapshotter.Oct 19 08:01:00 kvm-gaius-0 containerd-nydus-grpc[2853636]: time="2022-10-19T08:01:00.493700269Z" level=info msg="gc goroutine start..."Oct 19 08:01:00 kvm-gaius-0 containerd-nydus-grpc[2853636]: time="2022-10-19T08:01:00.493947264Z" level=info msg="found 0 daemons running"

转换 Nydus 格式镜像

转换 python:latest 镜像为 Nydus 格式镜像, 可以直接使用已经转换好的 

dragonflyoss/python-nydus:latest 镜像, 跳过该步骤。转换工具可以使用Nydusify[3] 也可以使用 acceld[4]。

登陆 Dockerhub

转换 Nydus 镜像, 

DOCKERHUB_REPO_NAME 环境变量设置为用户个人的镜像仓库:

DOCKERHUB_REPO_NAME=dragonflyosssudo nydusify convert --nydus-image /usr/local/bin/nydus-image --source python:latest --target $DOCKERHUB_REPO_NAME/python-nydus:latest

Nerdctl 运行 Nydus 镜像

使用 Nerdctl 运行 python-nydus:latest , 过程中即通过 Nydus 和 Dragonfly 下载镜像:

sudo nerdctl --snapshotter nydus run --rm -it $DOCKERHUB_REPO_NAME/python-nydus:latest

搜索日志验证 Nydus 基于 Mirror 模式通过 Dragonfly 分发流量:

$ grep mirrors /var/lib/containerd-nydus/logs/**/*log[2022-10-19 10:16:13.276548 +00:00] INFO [storage/src/backend/connection.rs:271] backend config: ConnectionConfig { proxy: ProxyConfig { url: "", ping_url: "", fallback: false, check_interval: 5, use_http: false }, mirrors: [MirrorConfig { host: "http://127.0.0.1:65001", headers: {"X-Dragonfly-Registry": "https://index.docker.io"}, auth_through: false }], skip_verify: false, timeout: 10, connect_timeout: 10, retry_limit: 2 }

PART. 3

性能测试

测试 Nydus Mirror 模式与 Dragonfly P2P 集成后的单机镜像下载的性能。测试是在同一台机器上面做不同场景的测试。由于机器本身网络环境、配置等影响,实际下载时间不具有参考价值,但是不同场景下载时间所提升的比率是有重要意义的。

图片

OCIv1: 使用 Containerd 直接拉取镜像并且启动成功的数据。

Nydus Cold Boot: 使用 Containerd 通过 Nydus 拉取镜像,没有命中任何缓存并且启动成功的数据。

Nydus & Dragonfly Cold Boot: 使用 Containerd 通过 Nydus 拉取镜像,并且基于 Nydus Mirror 模式流量转发至 Dragonfly P2P,在没有命中任何缓存并且启动成功的数据。

Hit Dragonfly Remote Peer Cache: 使用 Containerd 通过 Nydus 拉取镜像,并且基于 Nydus Mirror 模式流量转发至 Dragonfly P2P,在命中 Dragonfly 的远端 Peer 缓存的情况下并且成功启动的数据。

Hit Dragonfly Local Peer Cache: 使用 Containerd 通过 Nydus 拉取镜像,并且基于 Nydus Mirror 模式流量转发至 Dragonfly P2P,在命中 Dragonfly 的本地 Peer 缓存的情况下并且成功启动的数据。

Hit Nydus Cache: 使用 Containerd 通过 Nydus 拉取镜像,并且基于 Nydus Mirror 模式流量转发至 Dragonfly P2P,在命中 Nydus 的本地缓存的情况下并且成功启动的数据。

测试结果表明 Nydus Mirror 模式和 Dragonfly P2P 集成。使用 Nydus 下载镜像对比OCIv1的模式,能够有效减少镜像下载时间。Nydus 冷启动和 Nydus & Dragonfly 冷启动数据基本接近。

其他命中 Dragonfly Cache 的结果均好于只使用 Nydus 的情况。最重要的是如果很大规模集群使用 Nydus 拉取镜像,会将每个镜像层的下载分解按需产生很多 Range 请求。增加镜像仓库源站 QPS 。

而 Dragonfly 可以基于 P2P 技术有效减少回源镜像仓库的请求数量和下载流量。最优的情况,Dragonfly 可以保证大规模集群中每个下载任务只回源一次。

|相关链接|

[1]Dragonfly1.x:https://github.com/dragonflyoss/Dragonfly
[2]Kind:https://kind.sigs.k8s.io/
[3]Nydusify:https://github.com/dragonflyoss/image-service/blob/master/docs/nydusify.md
[4]Acceld:https://github.com/goharbor/acceleration-service

|社区相关网址|

Dragonfly 社区官网网站:

https://d7y.io/

Github 仓库:

https://github.com/dragonflyoss/Dragonfly2

Slack Channel: 

#dragonflyonCNCF Slack

Discussion Group:

dragonfly-discuss@googlegroups.com

Twitter: @dragonfly_oss

Nydus 社区官方网站:

https://nydus.dev/

Github 库:

https://github.com/dragonflyoss/image-service

Slack Channel:   #nydus

点击原文,了解更多…

Dragonfly Star 一下✨:

https://github.com/dragonflyoss/Dragonfly2

 本周推荐阅读

Dragonfly 基于 P2P 的文件和镜像分发系统

Dragonfly 中 P2P 传输协议优化

Nydus | 容器镜像基础

Nydus —— 下一代容器镜像的探索实践

相关实践学习
通过容器镜像仓库与容器服务快速部署spring-hello应用
本教程主要讲述如何将本地Java代码程序上传并在云端以容器化的构建、传输和运行。
Kubernetes极速入门
Kubernetes(K8S)是Google在2014年发布的一个开源项目,用于自动化容器化应用程序的部署、扩展和管理。Kubernetes通常结合docker容器工作,并且整合多个运行着docker容器的主机集群。 本课程从Kubernetes的简介、功能、架构,集群的概念、工具及部署等各个方面进行了详细的讲解及展示,通过对本课程的学习,可以对Kubernetes有一个较为全面的认识,并初步掌握Kubernetes相关的安装部署及使用技巧。本课程由黑马程序员提供。   相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
28天前
|
存储 缓存 NoSQL
深入理解Django与Redis的集成实践
深入理解Django与Redis的集成实践
49 0
|
8天前
|
jenkins Devops Java
DevOps实践:Jenkins在持续集成与持续部署中的价值
【10月更文挑战第27天】在快速发展的软件开发领域,DevOps实践日益重要。Jenkins作为一款流行的开源自动化服务器,在持续集成(CI)和持续部署(CD)中扮演关键角色。本文通过案例分析,探讨Jenkins在Java项目中的应用,展示其自动化构建、测试和部署的能力,提高开发效率和软件质量。
25 1
|
1月前
|
运维 Devops jenkins
DevOps实践:自动化部署与持续集成的实现之旅
本文旨在通过一个实际案例,向读者展示如何将DevOps理念融入日常工作中,实现自动化部署和持续集成。我们将从DevOps的基础概念出发,逐步深入到工具的选择、环境的搭建,以及流程的优化,最终实现一个简单而高效的自动化部署流程。文章不仅提供代码示例,更注重于实践中的思考和问题解决,帮助团队提高软件开发和运维的效率。
|
29天前
|
运维 监控 Devops
DevOps实践:自动化部署与持续集成的融合之旅
【10月更文挑战第7天】在软件开发领域,DevOps已成为一种文化和实践,它倡导开发(Dev)与运维(Ops)之间的协作与整合。本文将引导读者了解如何通过自动化部署和持续集成(CI)的实践来提升软件交付的速度和质量。我们将探讨一些实用的工具和技术,以及它们是如何帮助团队高效地管理代码变更、测试和部署的。文章将不包含代码示例,但会详细解释概念和流程,确保内容的通俗易懂和条理性。
130 62
|
9天前
|
jenkins Devops 测试技术
DevOps实践:Jenkins在持续集成与持续部署中的价值
【10月更文挑战第26天】随着DevOps理念的普及,Jenkins作为一款开源自动化服务器,在持续集成(CI)与持续部署(CD)中发挥重要作用。本文通过某中型互联网企业的实际案例,展示了Jenkins如何通过自动化构建、持续集成和持续部署,显著提升开发效率、代码质量和软件交付速度,帮助企业解决传统手工操作带来的低效和错误问题。
33 4
|
29天前
|
运维 监控 Devops
DevOps实践:持续集成与部署的自动化之旅
【10月更文挑战第7天】在软件开发领域,DevOps已成为提升效率、加速交付和确保质量的关键策略。本文将深入探讨如何通过实施持续集成(CI)和持续部署(CD)来自动化开发流程,从而优化运维工作。我们将从基础概念入手,逐步过渡到实际操作,包括工具选择、流程设计以及监控和反馈机制的建立。最终,我们不仅会展示如何实现这一自动化流程,还会讨论如何克服常见的挑战,以确保成功实施。
61 9
|
4天前
|
运维 Devops jenkins
DevOps实践之持续集成与持续交付
【10月更文挑战第32天】在软件开发的快节奏世界中,DevOps已经成为提升效率和质量的关键策略。通过将开发(Development)和运维(Operations)紧密结合,DevOps促进了更快速的软件发布和更高的可靠性。本文将深入探讨DevOps的核心组成部分——持续集成(CI)和持续交付(CD),并展示如何通过实际代码示例实现它们,以帮助团队构建更加高效和稳定的软件发布流程。
|
1月前
|
运维 Devops jenkins
DevOps实践:自动化部署与持续集成的实现
【9月更文挑战第36天】本文通过深入浅出的方式,向读者展示了在现代软件开发中,DevOps如何通过自动化部署和持续集成提高开发效率和软件质量。文章不仅介绍了相关概念,还提供了实用的代码示例,帮助读者理解如何在实际工作中应用这些技术。
|
13天前
|
运维 安全 Devops
DevOps实践:持续集成与持续部署(CI/CD)的自动化之路
【10月更文挑战第22天】在软件交付的快速迭代中,DevOps文化和实践成为企业加速产品上市、保证质量和提升客户满意度的关键。本文将通过一个实际案例,深入探讨如何利用持续集成(Continuous Integration, CI)和持续部署(Continuous Deployment, CD)实现软件开发流程的高效自动化,包括工具选择、流程设计以及问题解决策略。我们将一起探索代码从编写到部署的全自动化旅程,揭示其对企业运维效率和产品质量所带来的深远影响。
|
1月前
|
Devops jenkins 测试技术
DevOps实践:持续集成与持续部署(CI/CD)的实现之路
【9月更文挑战第33天】在软件开发的海洋中,DevOps是一艘能够加速航行、提升航程质量的巨轮。本文将作为你的航海图,指引你理解并实现DevOps文化中的核心环节——持续集成(CI)与持续部署(CD)。我们将从基础概念出发,逐步深入到实际操作,带你领略代码到部署的全过程。准备好扬帆起航,让我们共同探索如何通过自动化工具和流程优化,让软件交付变得既高效又可靠。
下一篇
无影云桌面