100天搞定机器学习 番外:使用FastAPI构建机器学习API

简介: 100天搞定机器学习 番外:使用FastAPI构建机器学习API

FastAPI


FastAPI 是一个高性能 Web 框架,用于构建 API。


640.png


FastAPI 建立在 StarlettePydantic 之上。


  • Starlette:轻量级的 ASGI 框架和工具包,用来构建高性能的 asyncio 服务
  • Pydantic:Python中用于数据接口schema定义与检查的库。通过它,可以更为规范地定义和使用数据接口。


想要深入学习这两个库,可以移步对应官方文档


https://pydantic-docs.helpmanual.io/

https://www.starlette.io/


实际应用中,FastAPI 需要与Uvicorn一起使用,Uvicorn主要用于加载和提供应用程序的服务器。


FastAPI和Uvicorn的使用方法


使用之前先安装


pip install fastapi
pip install uvicorn


看一个小例子,感受一下FastAPI 多方便,多简单:


from typing import Optional
from fastapi import FastAPI
import uvicorn
#创建FastAPI实例
app = FastAPI()
#创建访问路径
@app.get("/")
def read_root():#定义根目录方法
    return {"message": "Hello World"}#返回响应信息
#定义方法,处理请求
@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}
#运行
if __name__ == '__main__':
    uvicorn.run(app, host="127.0.0.1", port=8000)


uvicron服务器运行之后可以尝试访问


http://127.0.0.1:8000/items/666,返回:


640.png


也可进在文档中调试


打开交互文档(Swagger UI)http://127.0.0.1:8000/docs


也可以访问API文档(ReDoc)http://127.0.0.1:8080/redoc


640.png


FastAPI部署机器学习模型


第一步:准备模型


import numpy as np
import os
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
import joblib
from sklearn import datasets
def main():
    clf = LogisticRegression()
    p = Pipeline([('clf', clf)])
    print('Training model...')
    p.fit(X, y)
    print('Model trained!')
    filename_p = 'IrisClassifier.pkl'
    print('Saving model in %s' % filename_p)
    joblib.dump(p, filename_p)
    print('Model saved!')
if __name__ == "__main__":
    print('Loading iris data set...')
    iris = datasets.load_iris()
    X, y = iris.data, iris.target
    print('Dataset loaded!')
    main()


第二步:创建FastAPI实例


import uvicorn
from fastapi import FastAPI 
import joblib
from os.path import dirname, join, realpath
from typing import List
app = FastAPI(
    title="Iris Prediction Model API",
    description="A simple API that use LogisticRegression model to predict the Iris species",
    version="0.1",
)
# load  model
with open(
    join(dirname(realpath(__file__)), "models/IrisClassifier.pkl"), "rb"
) as f:
    model = joblib.load(f)
def data_clean(str):
    arr = str.split(',')
    arr = list(map(float,arr))
    return arr
# Create Prediction Endpoint
@app.get("/predict-result")
def predict_iris(request):
    # perform prediction
    request = data_clean(request)
    prediction = model.predict([request])
    output = int(prediction[0])
    probas = model.predict_proba([request])
    output_probability = "{:.2f}".format(float(probas[:, output]))
    # output dictionary
    species = {0: "Setosa", 1: "Versicolour", 2:"Virginica"}
    # show results
    result = {"prediction": species[output], "Probability": output_probability}
    return result
if __name__ == '__main__':
    uvicorn.run(app, host="127.0.0.1", port=8001)


第三步:传入参数


我们用模型预测属性为以下值时Iris应该属于哪一类,并输出预测概率。


sepal_length=7.233
sepal_width=4.652
petal_length=7.39
petal_width=0.324

打开网址,传入参数


http://127.0.0.1:8001/predict-result?request=7.233%2C4.652%2C7.39%2C0.324


640.png

bingo!

相关文章
|
10天前
|
安全 API 数据安全/隐私保护
自学记录HarmonyOS Next DRM API 13:构建安全的数字内容保护系统
在完成HarmonyOS Camera API开发后,我深入研究了数字版权管理(DRM)技术。最新DRM API 13提供了强大的工具,用于保护数字内容的安全传输和使用。通过学习该API的核心功能,如获取许可证、解密内容和管理权限,我实现了一个简单的数字视频保护系统。该系统包括初始化DRM模块、获取许可证、解密视频并播放。此外,我还配置了开发环境并实现了界面布局。未来,随着数字版权保护需求的增加,DRM技术将更加重要。如果你对这一领域感兴趣,欢迎一起探索和进步。
66 18
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
50 12
|
1月前
|
JSON JavaScript 前端开发
深入浅出Node.js:从零开始构建RESTful API
在数字化时代的浪潮中,后端开发作为连接用户与数据的桥梁,扮演着至关重要的角色。本文将引导您步入Node.js的奇妙世界,通过实践操作,掌握如何使用这一强大的JavaScript运行时环境构建高效、可扩展的RESTful API。我们将一同探索Express框架的使用,学习如何设计API端点,处理数据请求,并实现身份验证机制,最终部署我们的成果到云服务器上。无论您是初学者还是有一定基础的开发者,这篇文章都将为您打开一扇通往后端开发深层知识的大门。
46 12
|
2天前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
|
2月前
|
监控 安全 API
深入浅出:构建高效RESTful API的最佳实践
在数字化时代,API已成为连接不同软件和服务的桥梁。本文将带你深入了解如何设计和维护一个高效、可扩展且安全的RESTful API。我们将从基础概念出发,逐步深入到高级技巧,让你能够掌握创建优质API的关键要素。无论你是初学者还是有经验的开发者,这篇文章都将为你提供实用的指导和启示。让我们一起探索API设计的奥秘,打造出色的后端服务吧!
|
2月前
|
JSON 缓存 测试技术
构建高效RESTful API的后端实践指南####
本文将深入探讨如何设计并实现一个高效、可扩展且易于维护的RESTful API。不同于传统的摘要概述,本节将直接以行动指南的形式,列出构建RESTful API时必须遵循的核心原则与最佳实践,旨在为开发者提供一套直接可行的实施框架,快速提升API设计与开发能力。 ####
|
2月前
|
JavaScript NoSQL API
深入浅出Node.js:从零开始构建RESTful API
在数字化时代的浪潮中,后端开发如同一座灯塔,指引着数据的海洋。本文将带你航行在Node.js的海域,探索如何从一张白纸到完成一个功能完备的RESTful API。我们将一起学习如何搭建开发环境、设计API结构、处理数据请求与响应,以及实现数据库交互。准备好了吗?启航吧!
|
2月前
|
安全 测试技术 API
构建高效RESTful API:后端开发的艺术与实践####
在现代软件开发的浩瀚星空中,RESTful API如同一座桥梁,连接着前端世界的绚丽多彩与后端逻辑的深邃复杂。本文旨在探讨如何精心打造一款既高效又易于维护的RESTful API,通过深入浅出的方式,剖析其设计原则、实现技巧及最佳实践,为后端开发者提供一份实用的指南。我们不深入晦涩的理论,只聚焦于那些能够即刻提升API品质与开发效率的关键点,让你的API在众多服务中脱颖而出。 ####
35 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
137 4
|
3天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
36 13
机器学习算法的优化与改进:提升模型性能的策略与方法