AutoTrain:Hugging Face 开源的无代码模型训练平台

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

平台功能:支持多种机器学习任务,包括大型语言模型微调、文本分类、图像分类等。
用户友好:提供无需编码的界面,非技术用户也能轻松训练模型。
自动化:集成模型训练的最佳实践,自动处理超参数调整、模型验证等复杂任务。

正文(附运行示例)

AutoTrain 是什么

公众号: 蚝油菜花 - autotrain-advanced

AutoTrain(AutoTrain Advanced)是 Hugging Face 推出的开源无代码平台,能简化最先进模型的训练过程。支持用户无需编写代码即可创建、微调和部署自己的 AI 模型,只需上传数据即可训练自定义机器学习模型。

AutoTrain 提供简单的界面,支持用户无需编码知识即可训练模型,自动处理训练中的复杂任务,如超参数调整和模型验证。

AutoTrain 的主要功能

  • 多任务支持:支持多种机器学习任务,包括大型语言模型(LLM)微调、文本分类/回归、标记分类、序列到序列任务、句子变换器微调、视觉语言模型(VLM)微调、图像分类/回归以及表格数据的分类和回归。
  • 简化训练流程:提供无需编码的界面,非技术用户也能轻松训练模型。
  • 自动化最佳实践:集成模型训练的最佳实践,包括超参数调整、模型验证、分布式训练、监控和维护。
  • 数据集处理:提供数据集处理器,负责数据的准备和预处理,确保数据格式适合训练,减少错误。
  • 分布式训练支持:支持在多 GPU 上进行分布式训练,无需对代码库进行大量修改。

AutoTrain 的技术原理

  • 项目配置管理:基于项目配置组件,用户设置任务类型、数据集、模型和其他训练参数,确保所有必要的配置在训练开始前就绪。
  • 数据集预处理:数据集处理器组件负责将数据转换为适合训练的格式,包括文本、图像和表格数据的清洗和转换。
  • 训练循环管理:训练器组件管理训练循环,计算损失和指标,优化模型参数。
  • 分布式训练:用 Hugging Face 的 Accelerate 库,AutoTrain 支持在多个 GPU 上无缝进行分布式训练。
  • 监控与日志记录:集成 TensorBoard 等工具,监控训练进度和性能指标,同时记录训练日志以供后续分析。

如何运行 AutoTrain

本地安装

你可以通过 PIP 安装 AutoTrain-Advanced Python 包。请确保你使用的是 Python 3.10 或更高版本。

pip install autotrain-advanced

确保你已经安装了 git lfs。你可以在这里找到安装说明:https://github.com/git-lfs/git-lfs/wiki/Installation

你还需要安装 torch、torchaudio 和 torchvision。

最好的运行方式是在 conda 环境中。你可以使用以下命令创建一个新的 conda 环境:

conda create -n autotrain python=3.10
conda activate autotrain
pip install autotrain-advanced
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
conda install -c "nvidia/label/cuda-12.1.0" cuda-nvcc

完成后,你可以使用以下命令启动应用程序:

autotrain app --port 8080 --host 127.0.0.1

如果你不喜欢使用 UI,你可以使用 AutoTrain 配置文件通过命令行进行训练。

要使用配置文件进行训练,你可以使用以下命令:

autotrain --config <path_to_config_file>

你可以在该仓库的 configs 目录中找到示例配置文件。

例如,以下是一个用于微调 SmolLM2 的配置文件示例:

task: llm-sft
base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct
project_name: autotrain-smollm2-finetune
log: tensorboard
backend: local

data:
  path: HuggingFaceH4/no_robots
  train_split: train
  valid_split: null
  chat_template: tokenizer
  column_mapping:
    text_column: messages

params:
  block_size: 2048
  model_max_length: 4096
  epochs: 2
  batch_size: 1
  lr: 1e-5
  peft: true
  quantization: int4
  target_modules: all-linear
  padding: right
  optimizer: paged_adamw_8bit
  scheduler: linear
  gradient_accumulation: 8
  mixed_precision: bf16
  merge_adapter: true

hub:
  username: ${
   HF_USERNAME}
  token: ${
   HF_TOKEN}
  push_to_hub: true

要使用上述配置文件微调模型,你可以使用以下命令:

export HF_USERNAME=<your_hugging_face_username>
export HF_TOKEN=<your_hugging_face_write_token>
autotrain --config <path_to_config_file>

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
7月前
|
机器学习/深度学习 开发者 索引
Hugging Face开源最大地球观测数据集
【2月更文挑战第17天】Hugging Face开源最大地球观测数据集
86 1
Hugging Face开源最大地球观测数据集
|
7月前
|
机器学习/深度学习 人工智能 开发工具
如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face
Hugging Face是一个机器学习(ML)和数据科学平台和社区,帮助用户构建、部署和训练机器学习模型。它提供基础设施,用于在实时应用中演示、运行和部署人工智能(AI)。用户还可以浏览其他用户上传的模型和数据集。Hugging Face通常被称为机器学习界的GitHub,因为它让开发人员公开分享和测试他们所训练的模型。 本次分享如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face。
如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face
|
4天前
|
人工智能 测试技术 Apache
SmolVLM:Hugging Face推出的轻量级视觉语言模型
SmolVLM是Hugging Face推出的轻量级视觉语言模型,专为设备端推理设计。以20亿参数量,实现了高效内存占用和快速处理速度。SmolVLM提供了三个版本以满足不同需求,并完全开源,所有模型检查点、VLM数据集、训练配方和工具均在Apache 2.0许可证下发布。
25 7
SmolVLM:Hugging Face推出的轻量级视觉语言模型
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
61 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
25天前
|
数据采集 自然语言处理 PyTorch
动手实践:使用Hugging Face Transformers库构建文本分类模型
【10月更文挑战第29天】作为一名自然语言处理(NLP)爱好者,我一直对如何利用最先进的技术解决实际问题充满兴趣。Hugging Face 的 Transformers 库无疑是目前最流行的 NLP 工具之一,它提供了大量的预训练模型和便捷的接口,使得构建和训练文本分类模型变得更加简单高效。本文将通过具体的实例教程,指导读者如何使用 Hugging Face 的 Transformers 库快速构建和训练一个文本分类模型,包括环境搭建、数据预处理、模型选择与训练等步骤。
58 0
|
机器学习/深度学习 数据挖掘 PyTorch
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(上)
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(上)
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch与Hugging Face Transformers:快速构建先进的NLP模型
【8月更文第27天】随着自然语言处理(NLP)技术的快速发展,深度学习模型已经成为了构建高质量NLP应用程序的关键。PyTorch 作为一种强大的深度学习框架,提供了灵活的 API 和高效的性能,非常适合于构建复杂的 NLP 模型。Hugging Face Transformers 库则是目前最流行的预训练模型库之一,它为 PyTorch 提供了大量的预训练模型和工具,极大地简化了模型训练和部署的过程。
202 2
|
4月前
|
存储 人工智能 自然语言处理
【AI大模型】Transformers大模型库(十四):Datasets Viewer
【AI大模型】Transformers大模型库(十四):Datasets Viewer
33 0
|
4月前
|
人工智能 自然语言处理 PyTorch
【AI大模型】Transformers大模型库(十五):timm库
【AI大模型】Transformers大模型库(十五):timm库
88 0
|
4月前
|
机器学习/深度学习 数据采集 人工智能
【AI大模型】Transformers大模型库(十一):Trainer训练类
【AI大模型】Transformers大模型库(十一):Trainer训练类
90 0

热门文章

最新文章