AutoML 在 PAI 里进行自动调参训练|学习笔记

简介: 快速学习 AutoML 在 PAI 里进行自动调参训练。

开发者学堂课程【PAL 平台学习路线:机器学习入门到应用:AutoML 在 PAI 里进行自动调参训练】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/855/detail/14235


AutoML 在 PAI 里进行自动调参训练

 

如何使用 AutoML 在 PAI 里进行自动调参训练

登录 PAI 控制台

 图片30.png

在 PAI 里面创建一个 AI 空间,从 AutoML 选择刚刚创建的项目进入机器学习。在首页可以选择从模板开始创建。本次教程以雾霾天气实验为例。打开该试验后点击上方的 AutoML,选择需要调参的算法,当有多个算法时选择一个。PAI提供了很多算法,可以帮助自动调参。

选取 RANDOM-SEARCH 这个算法为优化方式,在迭代次数选择5,就代表会进行5轮。之后训练产生5个模型并进行排序。自定义范围不能超过系统给定的时间。可以从4个评估标准中选择一个去评估模型。保存模型数量只能是1-5,它会根据所选择的评估标准对模型进行排名。最终保存排名比较在前的几个模型。

图片29.png 

使用自动调参的算法旁边会出现绿色小标:

 图片28.png

先单机运行,就可以查看调参运行详情了。这个数据指标可以查看当前运行的进程和各模型的运行状态。单机日志获得参数。可以查看每一个候选模型的日志和参数。

图标是超参迭代的对比:

 图片27.png

可以查看每一轮数据更新之后评估指标增长的趋势。

训练完成之后自动调参出的最优模型将会保存在左侧导航栏的模型里。打开模型实验,点对应文件夹就可以看到。

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
8月前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
7月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
4月前
|
机器学习/深度学习 自然语言处理 算法
Java 大视界 -- Java 大数据机器学习模型在自然语言处理中的对抗训练与鲁棒性提升(205)
本文探讨Java大数据与机器学习在自然语言处理中的对抗训练与鲁棒性提升,分析对抗攻击原理,结合Java技术构建对抗样本、优化训练策略,并通过智能客服等案例展示实际应用效果。
|
11月前
|
人工智能 调度 芯片
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
|
9月前
|
人工智能 自然语言处理 算法
MT-MegatronLM:国产训练框架逆袭!三合一并行+FP8黑科技,大模型训练效率暴涨200%
MT-MegatronLM 是摩尔线程推出的面向全功能 GPU 的开源混合并行训练框架,支持多种模型架构和高效混合并行训练,显著提升 GPU 集群的算力利用率。
708 18
|
9月前
|
机器学习/深度学习 人工智能 边缘计算
DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。
|
11月前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
313 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
12月前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
796 22
|
11月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
221 6
|
10月前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
249 0

热门文章

最新文章