机器学习——降维算法PCA

简介: 机器学习——降维算法PCA

以下是使用PCA算法处理实际问题的例子,同样使用鸢尾花数据集,目的依旧是完成降维任务


基本的流程如下:


1.数据预处理,只有数值数据才可以进行PCA降维


2.计算样本数据的协方差方阵


3.求解协方差矩阵的特征值和特征向量


4.将特征值按照从大到小的顺序排列,选择其中较大的K个,然后将其对应的K个特征向量组成投影矩阵


5.将样本点投影计算,完成PCA降维任务


1、导入数据


import numpy as np
import pandas as pd
# 读取数据集
df = pd.read_csv('iris.data')
# 原始数据没有给定列名的时候需要我们自己加上
df.columns=['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'class']
df.head()

image.png


2、展示数据特征


# 把数据分成特征和标签
X = df.iloc[:,0:4].values
y = df.iloc[:,4].values
from matplotlib import pyplot as plt
# 展示我们标签用的
label_dict = {1: 'Iris-Setosa',
              2: 'Iris-Versicolor',
              3: 'Iris-Virgnica'}
# 展示特征用的
feature_dict = {0: 'sepal length [cm]',
                1: 'sepal width [cm]',
                2: 'petal length [cm]',
                3: 'petal width [cm]'}
# 指定绘图区域大小
plt.figure(figsize=(8, 6))
for cnt in range(4):
    # 这里用子图来呈现4个特征
    plt.subplot(2, 2, cnt+1)
    for lab in ('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'):
        plt.hist(X[y==lab, cnt],
                     label=lab,
                     bins=10,
                     alpha=0.3,)
    plt.xlabel(feature_dict[cnt])
    plt.legend(loc='upper right', fancybox=True, fontsize=8)
plt.tight_layout()
plt.show()

image.png


可以看见,有些特征区别能力较强,能把3种花各自呈现出来;有的特征区别能力较弱,部分特征数据样本混杂在一起。


3、数据标准化


一般情况下,在进行训练前,数据经常需要进行标准化处理。


from sklearn.preprocessing import StandardScaler
X_std = StandardScaler().fit_transform(X)


4、计算协方差矩阵


mean_vec = np.mean(X_std, axis=0)
cov_mat = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0]-1)
print('协方差矩阵 \n%s' %cov_mat)
# 利用numpy也可以
# print('NumPy 计算协方差矩阵: \n%s' %np.cov(X_std.T))
协方差矩阵 
[[ 1.00675676 -0.10448539  0.87716999  0.82249094]
 [-0.10448539  1.00675676 -0.41802325 -0.35310295]
 [ 0.87716999 -0.41802325  1.00675676  0.96881642]
 [ 0.82249094 -0.35310295  0.96881642  1.00675676]]


5、求特征值与特征向量


cov_mat = np.cov(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
print('特征向量 \n%s' %eig_vecs)
print('\n特征值 \n%s' %eig_vals)
特征向量 
[[ 0.52308496 -0.36956962 -0.72154279  0.26301409]
 [-0.25956935 -0.92681168  0.2411952  -0.12437342]
 [ 0.58184289 -0.01912775  0.13962963 -0.80099722]
 [ 0.56609604 -0.06381646  0.63380158  0.52321917]]
特征值 
[2.92442837 0.93215233 0.14946373 0.02098259]


6、按照特征值大小进行排序


# 把特征值和特征向量对应起来
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_vals))]
print (eig_pairs)
print ('----------')
# 把它们按照特征值大小进行排序
eig_pairs.sort(key=lambda x: x[0], reverse=True)
# 打印排序结果
print('特征值又大到小排序结果:')
for i in eig_pairs:
    print(i[0])
[(2.9244283691111126, array([ 0.52308496, -0.25956935,  0.58184289,  0.56609604])), (0.9321523302535072, array([-0.36956962, -0.92681168, -0.01912775, -0.06381646])), (0.14946373489813383, array([-0.72154279,  0.2411952 ,  0.13962963,  0.63380158])), (0.020982592764270565, array([ 0.26301409, -0.12437342, -0.80099722,  0.52321917]))]
----------
特征值又大到小排序结果:
2.9244283691111126
0.9321523302535072
0.14946373489813383
0.020982592764270565


7、计算累积结果


将特征向量累加起来,超过一定百分比时,就可以选择其为降维后的维度大小


# 计算累加结果
tot = sum(eig_vals)
var_exp = [(i / tot)*100 for i in sorted(eig_vals, reverse=True)]
print (var_exp)
cum_var_exp = np.cumsum(var_exp)
cum_var_exp
[72.62003332692029, 23.147406858644153, 3.711515564584534, 0.5210442498510144]
array([ 72.62003333,  95.76744019,  99.47895575, 100.        ])


可以发现,使用前两个特征值时,其对应的累积贡献率已经超过了95%,所以选择降到了二维。


# cumsum的用法例子
a = np.array([1,2,3,4])
print (a)
print ('-----------')
print (np.cumsum(a))
[1 2 3 4]
-----------
[ 1  3  6 10]


画图可以更直接的展示


plt.figure(figsize=(6, 4))
plt.bar(range(4), var_exp, alpha=0.5, align='center',
            label='individual explained variance')
plt.step(range(4), cum_var_exp, where='mid',
             label='cumulative explained variance')
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.tight_layout()
plt.show()

image.png


8、完成PCA降维


将前两个特征向量组合起来完成降维操作


matrix_w = np.hstack((eig_pairs[0][1].reshape(4,1),
                      eig_pairs[1][1].reshape(4,1)))
print('Matrix W:\n', matrix_w)
Matrix W:
 [[ 0.52308496 -0.36956962]
 [-0.25956935 -0.92681168]
 [ 0.58184289 -0.01912775]
 [ 0.56609604 -0.06381646]]
Y = X_std.dot(matrix_w)
print("X.shape : ",X.shape)
print("Y.shape : ",Y.shape)
X.shape :  (149, 4)
Y.shape :  (149, 2)


可以看见将原来的数据从4维降到2维


9、可视化对比降维前后数据的分布

由于数据具有4个特征,无法在平面图中显示,因此只使用两维特征显示数据


plt.figure(figsize=(6, 4))
for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                        ('blue', 'red', 'green')):
     plt.scatter(X[y==lab, 0],
                X[y==lab, 1],
                label=lab,
                c=col)
plt.xlabel('sepal_len')
plt.ylabel('sepal_wid')
plt.legend(loc='best')
plt.tight_layout()
plt.show()

image.png


降维后的结果


plt.figure(figsize=(6, 4))
for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                        ('blue', 'red', 'green')):
     plt.scatter(Y[y==lab, 0],
                Y[y==lab, 1],
                label=lab,
                c=col)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(loc='lower center')
plt.tight_layout()
plt.show()

image.png


目录
相关文章
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
172 4
|
29天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
159 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
19天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
45 14
|
2月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
69 2
|
3月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
69 1
|
16天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
16天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
111 68
|
25天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
26天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
26天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。