分布式事务与分布式一致性的区别 | 学习笔记

简介: 快速学习 分布式事务与分布式一致性的区别

开发者学堂课程【精通 Spring Cloud Alibaba分布式事务与分布式一致性的区别学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址https://developer.aliyun.com/learning/course/634/detail/10102


分布式事务与分布式一致性的区别


分布式事务与分布式系统一致性的区别

分布式事务一般用于业务的使用场景当中,比如跨度、跨服务之间需要保持数据同步,这个过程叫做分布事务一致性问题。

分布式系统:用于软件做集群的情况下,需要软件做集群的问题

分布式事务一致性框架与分式系统一致性算法有哪些.

分布式事务一致性框架:

核心解决我们在实际系统中产生夸事务导致分布式事务问题。

核心靠的就是最终一致性:

rockemq 事务消息、rabitting 补单、lcnseata 等。

分式系统一致性算法:解决我们系统之间集群之后每个节点保持数据的一致性.

raft(nacos)zab(zookeeper)paxos

相关文章
|
2月前
|
数据采集 监控 NoSQL
优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
本文讲述了作者在房地产数据采集项目中遇到的分布式数据同步问题,通过实施一致性、去重和冲突解决的“三板斧”策略,成功解决了数据重复和同步延迟问题,提高了系统稳定性。核心在于时间戳哈希保证一致性,URL归一化和布隆过滤器确保去重,分布式锁解决写入冲突。
179 2
 优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
|
2月前
|
消息中间件 运维 监控
《聊聊分布式》BASE理论 分布式系统可用性与一致性的工程平衡艺术
BASE理论是对CAP定理中可用性与分区容错性的实践延伸,通过“基本可用、软状态、最终一致性”三大核心,解决分布式系统中ACID模型的性能瓶颈。它以业务为导向,在保证系统高可用的同时,合理放宽强一致性要求,并借助补偿机制、消息队列等技术实现数据最终一致,广泛应用于电商、社交、外卖等大规模互联网场景。
|
6月前
|
监控 算法 关系型数据库
分布式事务难题终结:Seata+DRDS全局事务一致性架构设计
在分布式系统中,CAP定理限制了可用性、一致性与分区容错的三者兼得,尤其在网络分区时需做出取舍。为应对这一挑战,最终一致性方案成为常见选择。以电商订单系统为例,微服务化后,原本的本地事务演变为跨数据库的分布式事务,暴露出全局锁失效、事务边界模糊及协议差异等问题。本文深入探讨了基于 Seata 与 DRDS 的分布式事务解决方案,涵盖 AT 模式实践、分片策略优化、典型问题处理、性能调优及高级特性实现,结合实际业务场景提供可落地的技术路径与架构设计原则。通过压测验证,该方案在事务延迟、TPS 及失败率等方面均取得显著优化效果。
374 61
|
7月前
|
监控 Java 调度
SpringBoot中@Scheduled和Quartz的区别是什么?分布式定时任务框架选型实战
本文对比分析了SpringBoot中的`@Scheduled`与Quartz定时任务框架。`@Scheduled`轻量易用,适合单机简单场景,但存在多实例重复执行、无持久化等缺陷;Quartz功能强大,支持分布式调度、任务持久化、动态调整和失败重试,适用于复杂企业级需求。文章通过特性对比、代码示例及常见问题解答,帮助开发者理解两者差异,合理选择方案。记住口诀:单机简单用注解,多节点上Quartz;若是任务要可靠,持久化配置不能少。
704 4
|
消息中间件 运维 数据库
Seata框架和其他分布式事务框架有什么区别
Seata框架和其他分布式事务框架有什么区别
470 153
|
存储 分布式计算 负载均衡
分布式计算模型和集群计算模型的区别
【10月更文挑战第18天】分布式计算模型和集群计算模型各有特点和优势,在实际应用中需要根据具体的需求和条件选择合适的计算架构模式,以达到最佳的计算效果和性能。
544 62
|
11月前
|
消息中间件 算法 调度
分布式系统学习10:分布式事务
本文是小卷关于分布式系统架构学习系列的第13篇,重点探讨了分布式事务的相关知识。随着业务增长,单体架构拆分为微服务后,传统的本地事务无法满足需求,因此需要引入分布式事务来保证数据一致性。文中详细介绍了分布式事务的必要性、实现方案及其优缺点,包括刚性事务(如2PC、3PC)和柔性事务(如TCC、Saga、本地消息表、MQ事务、最大努力通知)。同时,还介绍了Seata框架作为开源的分布式事务解决方案,提供了多种事务模式,简化了分布式事务的实现。
503 5
|
存储 缓存 负载均衡
一致性哈希:解决分布式难题的神奇密钥
一致哈希是一种特殊的哈希算法,用于分布式系统中实现数据的高效、均衡分布。它通过将节点和数据映射到一个虚拟环上,确保在节点增减时只需重定位少量数据,从而提供良好的负载均衡、高扩展性和容错性。相比传统取模方法,一致性哈希能显著减少数据迁移成本,广泛应用于分布式缓存、存储、数据库及微服务架构中,有效提升系统的稳定性和性能。
679 1
|
消息中间件 存储 算法
分布式系列第二弹:分布式事务!
分布式系列第二弹:分布式事务!
132 1