深度学习:NiN(Network In Network)详细讲解与代码实现

简介: 深度学习:NiN(Network In Network)详细讲解与代码实现

深度学习:NiN(Network In Network)详细讲解与代码实现

网络核心思想

LeNet、AlexNet和VGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。
AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。
或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结构。
网络中的网络(NiN)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机 [Lin et al., 2013]

1*1卷积

在这里插入图片描述
1 1卷积实际上就是对特征图所有channel对应的像素点做全连接网络,由于它只考虑了1个像素点,它不像3 3卷积那样可以考虑周围像素点,但是可以让特征图在不需要padding的情况下保证的H、W不变,也就是融合了买个像素点不同通道的特征所以它也有跨通道交融的作用。卷积核的数量决定了输出的维度,所以用1 1卷积只会改变特征图的channel数,这也就是1 1卷积有升维 、降维的作用,在维度降低的同时,计算量也就减少了,模型速度会变快,与此同时,它在保留了空间信息的同时,还增加了非线性激活函数,非线性激活函数可以增加模型的复杂程度,让模型逼近更复杂的曲线。

NiN块的作用

在这里插入图片描述
NiN是由AlexNet改进而来的,他的主要贡献是提出了NiN块这个概念,随着网络层数的加大,参数的数量也水涨船高,我们举一个例子:
在这里插入图片描述
假设现在特征图是 28 28 256,我们想把它变成28 28 32
我们的原始方法是采用32个 5 * 5的卷积核。如上图,那么它的参数量就是:

$5*5*32*256+32=20182$

而我们的NiN块的核心思想是把原始特征图先降维在升维,也就是我把32个 5 5卷积核替换成先经过16个 1 1的卷积核,特征图就变成了, 28 28 16 ,然后在经过一个32个 5 * 5 的卷积核,它的参数数量为:

$ 1 * 1 * 16 * 256+16 =4112$

$ 5*5*32*16 +32=12832 $

求和也就是16944,参数量对比之前少了15%左右。
在这里插入图片描述

全局池化(Global Average Pooling)

在NiN网络中,去掉了卷积层后面的全连接层,加入与了全局池化层,全局池化层是把最后的特征图数量变成了分类的数量,这样的可解释性更强,之后,我们只需要对每一个channel求一个全局平均值,然后经过,Softmax分类,这样也大大减少了参数量。

基于NiN的服装分类(Pytorch)

服装分类数据集

我们可以通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中。

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0到1之间
def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)#通过compose组合多个操作
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=4),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=4))
                            #num workers 为线程数

定义模型


def nin_block(in_channels, out_channels, kernel_size,strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1),
        nn.ReLU()
    )

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten())
    

测试数据

def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2)#累加器
    
    with torch.no_grad():#禁止计算梯度
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

训练模型

#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()#更新参数
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')
train_iter, test_iter = load_data_fashion_mnist(256, resize=224)
train_ch6(net, train_iter, test_iter, 10, 0.01, d2l.try_gpu())

在这里插入图片描述

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】深度学习的概述及应用,附带代码示例
深度学习(Deep Learning,简称DL)是机器学习领域中的一个重要分支,其目标是通过模拟人脑神经网络的工作机制,构建多层次的抽象特征表示,使机器能够自动从原始数据中提取关键信息,从而实现高精度的任务执行。深度学习通过多层神经网络结构及其训练方式,实现了从低级像素级别到高级概念级别的递进式知识层次。 深度学习的主要组件包括输入层、隐藏层和输出层。隐藏层的数量和层数决定了模型的复杂度和表达能力。在训练过程中,权重更新和梯度下降法是关键步骤,目的是最小化损失函数,提高预测精度。深度学习主要基于反向传播算法(BP Algorithm)来优化模型参数,通过正向传播、损失计算、反向传播和梯度下降等
71 8
|
1月前
|
机器学习/深度学习 算法 算法框架/工具
深度学习在图像识别中的应用及代码实现
【8月更文挑战第3天】深度学习技术在图像识别领域取得了显著的成果,通过构建深度神经网络模型,实现了对复杂图像数据的高效处理和准确识别。本文将介绍深度学习在图像识别中的原理、关键技术及应用实例,并通过代码示例展示如何利用深度学习框架进行图像识别任务的实现。
|
1月前
|
机器学习/深度学习 算法 算法框架/工具
探索深度学习:从理论到代码实现
【8月更文挑战第2天】本文将深入探讨深度学习的核心理论,并通过实际的代码示例来展示这些理论的应用。我们将从基础的神经网络开始,逐步引入更复杂的模型和算法,如卷积神经网络(CNN)和循环神经网络(RNN)。最后,我们将通过一个具体的项目来展示如何将这些理论应用于实际问题。
33 0
|
3月前
|
机器学习/深度学习 存储 算法
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
|
3月前
|
机器学习/深度学习 存储 编解码
基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计(2)
基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计
|
3月前
|
机器学习/深度学习 存储 计算机视觉
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
3月前
|
机器学习/深度学习 存储 安全
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
3月前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
|
3月前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的高压输电线绝缘子缺陷智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测
基于YOLOv8深度学习的高压输电线绝缘子缺陷智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测
|
3月前
|
机器学习/深度学习 算法 安全
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入