Presto架构原理

简介: Presto架构原理

💨概述

💨大数据与OLAP

🎈什么是大数据?

大数据其实是在2000年后,因 为信息化的快速发展。信息交换、信息 存储、信息处理三个方面能力的大幅增 长而产生的数据。

🎈Hadoop

基于廉价机器的存算分离的大规模分布式处理系统

🎈OLAP

OLAP 是 在线分析处理,顾名思义就是OLAP是 用于数据分析的;因此,它使我们能够同时分析来自多个数据库系统的信息。换句话说,我们可以说它是一种计算方法,可以让用户轻松提取所需的数据并查询数据,以便从不同的角度进行分析。OLAP(OnLine Analytical Processing对业务数据执行多维分析,并提供复杂计算,趋势分析和复杂 数据建模的能力。是许多商务智能(BI) 应用程序背后的技术。 🚩它基本上是基于庞大的数据,称为数据仓库;
🚩它从数据仓库中收集所需的数据并执行业务所需的分析,以在业务中做出一些决策,以提高利润、改善销售、改善品牌、改善营销等等。🚩因此,它在商业智能中用于趋势分析、销售预测、财务报告、计划目的、预算等方面的查询辅助。

🎈常见的OLAP引擎

🚩预计算引擎: Kylin, Druid🚩批式处理引擎: Hive, Spark🚩流式处理引擎: Flink🚩交互式处理引擎: Presto, Clickhouse, Doris

💨Presto设计思想

🎈Presto是什么

Presto是 Facebook 推出的一个开源的分布式SQL查询引擎,数据规模可以支持GB到PB级,主要应用于处理秒级查询的场景。

Presto 的设计和编写完全是为了解决像 Facebook 这样规模的商业数据仓库的 交互式分析和处理速度的问题。

🎈特点

🚩多租户任务的管理与调度🚩多数据源联邦查询🚩支持内存化计算🚩Pipeline式数据处理

💨Presto基础原理与概念

💨基础概念

🎈服务相关

Coordinator:①解析SQL语句②生成执行计划③分发执行任务给Worker节点Worker:①执行Task处理数据②与其他Worker交互传输数据

🎈数据源相关

🚩Connector:以个Connector代表种数据源。可以认为Connector是由Presto提供的适配多数据源的统一接口。🚩Catalog:管理元信息与实际数据的映射关系。

🎈Query相关

🚩Query:基于SQL parser后获得的执行计划🚩Stage:根据是否需要shufle将Query拆分成不同的subplan,每一个subplan便是一个stage🚩Fragment:基本等价于Stage,属于在不同阶段的称呼,在本门课程可以认为两者等价🚩Task:单个Worker节点上的最小资源管理单元:在一个节点上,一个Stage只有一个Task,一个Query可能有多个Task。🚩Pipeline:Stage按照LocalExchange切分为若干Operator集合,每个Operator集合定义一个Pipeline。🚩Driver:Pipeline的可执行实体,Pipeline和Driver的关系可类比程序和进程,是最小的执行单元,通过火山迭代模型执行每一个Operator。🚩Split:输入数据描述(数据实体是Page),数量上和Driver一对应,不仅代表实际数据源split,也代表了不同stage间传输的数据。🚩Operator:最小的物理算子。

🎈数据传输相关

🚩Exchange:表示不同Stage间的数据传输,大多数意义下等价于Shuffle。🚩LocalExchange:Stage 内的rehash操作,常用于提高并行处理数据的能力(Task在Presto中只是最小的容器,而不是最小的执行单元),LocalExchange的默认数值是16。

如何衡量某个任务某个Stage的真实并行度?

在不同Pipeline下Split (Driver)的数目之和。

💨核心组件架构介绍

✔架构图

图片.png

🎈服务发现

Discovery Service:🚩Worker配置文件配置Discovery Service地址🚩Worker节点启动后会向Discovery Service注册🚩Coordiantor从Discovery Service获取Worker的地址

🎈通信机制

🚩Presto Client / JDBC Client与Server间通信:Http🚩Coordinator与Worker间的通信:Thrift / Http🚩Worker与Worker间的通信:Thrift / Http

Thrift相比于Http具有更好的数据编码能力,Http 1.1还不支持头部信息的压缩,Thrift 具有更好的数据压缩率。


Presto 是一个运行在多台服务器上的分布式系统。完整安装包括一个 Coordinator 和多 个 Worker。由客户端提交查询,从 Presto 命令行 CLI 提交到 Coordinator。Coordinator 进行 解析,分析并执行查询计划,然后分发处理队列到 Worker 。

💨Presto重要机制

💨多租户资源管理

🎈Resource Group

🚩类似Yarn多级队列的资源管理方式🚩基于CPU、MEMORY、SQL 执行数进行资源使用量限制

优点:轻量的Query级别的多级队列资源管理模式

缺点:存在一定滞后性,只会对Group 中正在运行的SQL进行判断

💨多租户下的任务调度

🎈物理生成

🚩Antlr4解析生成AST🚩转换成Logical Plan🚩按照是否存在Shuffle (Exchange) ,切分成不同的Stage (Fragment)

🎈Stage调度

同时调度分阶段调度

🚩PhasedExecutionPolicy:不代表每个stage都分开调度

🍳典型的应用场景(join查询)

🚩Build 端:右表构建用户join的hashtable🚩Probe 端:对用户左表数据进行探查, 需要等待build端完成🚩Build 端构建hashtable端时,probe 端是一直在空跑的

🍳Stage的调度策略:

延迟点,会存在任务空跑有一定延迟、节省部分资源

🎈Task调度

🍳Task的数量如何确定:

🚩Source :根据数据meta决定分配多少个节点🚩Fixed: hash partition count确定,如集群节点数量🚩Sink: 汇聚结果,一台机器🚩Scaled: 无分区限制,可拓展,如write数据🚩Coordinator Only: 只需要coordinator参与

🍳选择什么样的节点

🚩HARD_ AFFINITY: 计算、存储Local模式,保障计算与存储在同一一个节点,减少数据传输

🚩SOFT AFFINITY: 基于某些特定算法,如一致性HASH函数,常用于缓存场景,保证相似的Task调度到同一个Worker

🚩NO_ PREFERENCE:随机选取,常用于普通的纯计算Task

🎈Split调度

FIFO:顺序执行,绝对公平

优先级调度:快速响应

优势:1.优先保证小Query快速执行  2.保障大Query存在固定比例的时间片,不会被完全饿死

💨内存计算

🎈Pipeline化的数据处理

Pipeline的引入更好的实现算子间的并行语义上保证了每个Task内的数据流式处理

🎈Back Pressure Mechanism

控制split生成流程控制operator的执行

💨多数据源联邦查询

将各个数据源进行统一的抽象, 最后由presto server进行统一的物理执行。

局限性:🚩元数据管理与映射(每个connector管理一套元数据服务)🚩谓词下推🚩数据源分片


  • Presto 与 Hive 对比,都能够处理 PB 级别的海量数据分析,但 Presto 是基于内存运算,减少没必要的硬盘 IO,所以更快
  • 能够连接多个数据源,跨数据源连表查,如从 Hive 查询大量网站访问记录,然后从 Mysql 中匹配出设备信息


相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
1055 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
2月前
|
机器学习/深度学习 自然语言处理 监控
23_Transformer架构详解:从原理到PyTorch实现
Transformer架构自2017年Google发表的论文《Attention Is All You Need》中提出以来,彻底改变了深度学习特别是自然语言处理领域的格局。在短短几年内,Transformer已成为几乎所有现代大型语言模型(LLM)的基础架构,包括BERT、GPT系列、T5等革命性模型。与传统的RNN和LSTM相比,Transformer通过自注意力机制实现了并行化训练,极大提高了模型的训练效率和性能。
|
5月前
|
存储 监控 算法
园区导航系统技术架构实现与原理解构
本文聚焦园区导航场景中室内外定位精度不足、车辆调度路径规划低效、数据孤岛难以支撑决策等技术痛点,从架构设计到技术原理,对该系统从定位到数据中台进行技术拆解。
237 0
园区导航系统技术架构实现与原理解构
|
7月前
|
存储 人工智能 自然语言处理
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
本文深入探讨了混合专家(MoE)架构在大型语言模型中的应用与技术原理。MoE通过稀疏激活机制,在保持模型高效性的同时实现参数规模的大幅扩展,已成为LLM发展的关键趋势。文章分析了MoE的核心组件,包括专家网络与路由机制,并对比了密集与稀疏MoE的特点。同时,详细介绍了Mixtral、Grok、DBRX和DeepSeek等代表性模型的技术特点及创新。MoE不仅解决了传统模型扩展成本高昂的问题,还展现出专业化与适应性强的优势,未来有望推动AI工具更广泛的应用。
4142 4
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
|
6月前
|
存储 消息中间件 canal
zk基础—2.架构原理和使用场景
ZooKeeper(ZK)是一个分布式协调服务,广泛应用于分布式系统中。它提供了分布式锁、元数据管理、Master选举及分布式协调等功能,适用于如Kafka、HDFS、Canal等开源分布式系统。ZK集群采用主从架构,具有顺序一致性、高性能、高可用和高并发等特点。其核心机制包括ZAB协议(保证数据一致性)、Watcher监听回调机制(实现通知功能)、以及基于临时顺序节点的分布式锁实现。ZK适合小规模集群部署,主要用于读多写少的场景。
|
8月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
2825 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
7月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
257 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
7月前
|
Java 开发者 Spring
Spring框架 - 深度揭秘Spring框架的基础架构与工作原理
所以,当你进入这个Spring的世界,看似一片混乱,但细看之下,你会发现这里有个牢固的结构支撑,一切皆有可能。不论你要建设的是一座宏大的城堡,还是个小巧的花园,只要你的工具箱里有Spring,你就能轻松搞定。
306 9
|
8月前
|
人工智能 自然语言处理 安全
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
CodeAct是一种先进的AI辅助系统范式,深度融合自然语言处理与代码执行能力。通过自定义代码执行代理,开发者可精准控制代码生成、执行及管理流程。本文基于LlamaIndex框架构建CodeAct Agent,解析其技术架构,包括代码执行环境、工作流定义系统、提示工程机制和状态管理系统。同时探讨安全性考量及应用场景,如软件开发、数据科学和教育领域。未来发展方向涵盖更精细的代码生成、多语言支持及更强的安全隔离机制,推动AI辅助编程边界拓展。
461 3
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理