从一个案例深入剖析InnoDB隐式锁和可见性判断(2)

简介: 从一个案例深入剖析InnoDB隐式锁和可见性判断
4、关于page的max trx id

我们上面多次提到二级索引page的max trx id,这个max trx id实际就是PAGE_MAX_TRX_ID,它位于page的offset 56后的8个字节,实际上这个值只会存在于二级索引上,主键没有这个值,我们可以看到如下:

表结构和数据
mysql> show create table testimp4 \G
*************************** 1. row ***************************
       Table: testimp4
Create Table: CREATE TABLE `testimp4` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `a` int(11) DEFAULT NULL,
  `b` int(11) DEFAULT NULL,
  `d` varchar(200) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `b` (`b`),
  KEY `d` (`d`)
) ENGINE=InnoDB AUTO_INCREMENT=10000 DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

mysql> select *from testimp4;
+------+------+------+------------------------------------+
| id   | a    | b    | d                                  |
+------+------+------+------------------------------------+
|    5 |    5 |  300 | NULL                               |
|    6 | 7000 | 7700 | 1124                               |
|   11 | 7000 | 7700 | 1124                               |
|   12 | 7000 | 7700 | 1124                               |
|   13 | 2900 | 1800 | NULL                               |
|   14 | 2900 | 1800 | NULL                               |
| 1000 |   88 | 1499 | NULL                               |
| 4000 | 6000 | 5904 | iiiafsafasfihhhccccchhhigggofgo111 |
| 4001 | 7000 | 7700 | 1124454555                         |
| 9999 | 9999 | 9999 | a                                  |
+------+------+------+------------------------------------+
10 rows in set (0.00 sec)

每次每行更新后会更新这个值,如果大于则修改,小于则不变。函数page_update_max_trx_id中有如下片段

begin;insert into testimp4 values(10000,10000,10000,'gp');(不提交)

四、关于加锁的阶段

我们一般锁需要加锁的都是DML语句和select for update这样的语句,这里将加锁分为数据查找和数据修改两个阶段。

  • 对于select for update:

主键访问数据:访问主键判断是否存在隐式锁,然后加显示锁。二级索引访问数据(需要回表的情况):访问二级索引判断是否存在隐式锁,然后加显示锁,接着回表主键判断是否存在隐式锁,然后加显示锁。

  • 对于update/delete:

主键访问修改数据:数据查找阶段主键判断是否存在隐式锁,然后加显示锁。数据修改阶段涉及到了其他二级索引,那么维护相应的二级索引加隐含锁。

二级索引访问修改数据:数据查找阶段二级索引判断是否存在隐式锁(可能需要回表判断),二级索引加显示锁,数据修改阶段回表修改主键数据加显示锁,然后维护各个二级索引(修改字段涉及的二级索引或者修改主键则包含全部二级索引)加隐式锁。

  • 对于insert而言如果没有堵塞(插入印象锁和gap lock堵塞),那么始终为隐式锁。

注意这里我们看到了隐式锁,隐式锁不会占用row的结构体,因此在show engine innodb status里面是看不到的,除非有其他事务显示将其转换为显示锁。我们来做几个例子如下(REPEATABLE READ隔离级别):

4.1 插入数据
begin;insert into testimp4 values(10000,10000,10000,'gp');(不提交)


image.png

# T1时刻S1锁状态:

---TRANSACTION 94487, ACTIVE 5 sec
1 lock struct(s), heap size 1160, 0 row lock(s), undo log entries 1
MySQL thread id 11, OS thread handle 140737089492736, query id 482 localhost root starting
show engine innodb status
TABLE LOCK table `test`.`testimp4` trx id 94487 lock mode IX

# T2时刻S1锁状态:
---TRANSACTION 94487, ACTIVE 271 sec
2 lock struct(s), heap size 1160, 1 row lock(s), undo log entries 1
MySQL thread id 11, OS thread handle 140737089492736, query id 484 localhost root starting
show engine innodb status
TABLE LOCK table `test`.`testimp4` trx id 94487 lock mode IX
RECORD LOCKS space id 501 page no 3 n bits 80 index PRIMARY of table `test`.`testimp4` trx id 94487 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 80002710; asc ' ;;
1: len 6; hex 000000017117; asc q ;;
2: len 7; hex d0000002c40110; asc ;;
3: len 4; hex 80002710; asc ' ;;
4: len 4; hex 80002710; asc ' ;;
5: len 2; hex 6770; asc gp;;

# T3时刻S1锁状态:
---TRANSACTION 94487, ACTIVE 337 sec
3 lock struct(s), heap size 1160, 2 row lock(s), undo log entries 1
MySQL thread id 11, OS thread handle 140737089492736, query id 521 localhost root starting
show engine innodb status
TABLE LOCK table `test`.`testimp4` trx id 94487 lock mode IX
RECORD LOCKS space id 501 page no 3 n bits 80 index PRIMARY of table `test`.`testimp4` trx id 94487 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 80002710; asc ' ;;
1: len 6; hex 000000017117; asc q ;;
2: len 7; hex d0000002c40110; asc ;;
3: len 4; hex 80002710; asc ' ;;
4: len 4; hex 80002710; asc ' ;;
5: len 2; hex 6770; asc gp;;

RECORD LOCKS space id 501 page no 4 n bits 80 index b of table `test`.`testimp4` trx id 94487 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
0: len 4; hex 80002710; asc ' ;;
1: len 4; hex 80002710; asc ' ;;

# T4时刻S1锁状态:
---TRANSACTION 94487, ACTIVE 408 sec
4 lock struct(s), heap size 1160, 3 row lock(s), undo log entries 1
MySQL thread id 11, OS thread handle 140737089492736, query id 559 localhost root starting
show engine innodb status
TABLE LOCK table `test`.`testimp4` trx id 94487 lock mode IX
RECORD LOCKS space id 501 page no 3 n bits 80 index PRIMARY of table `test`.`testimp4` trx id 94487 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 80002710; asc ' ;;
1: len 6; hex 000000017117; asc q ;;
2: len 7; hex d0000002c40110; asc ;;
3: len 4; hex 80002710; asc ' ;;
4: len 4; hex 80002710; asc ' ;;
5: len 2; hex 6770; asc gp;;

RECORD LOCKS space id 501 page no 4 n bits 80 index b of table `test`.`testimp4` trx id 94487 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
0: len 4; hex 80002710; asc ' ;;
1: len 4; hex 80002710; asc ' ;;

RECORD LOCKS space id 501 page no 5 n bits 80 index d of table `test`.`testimp4` trx id 94487 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
0: len 2; hex 6770; asc gp;;
1: len 4; hex 80002710; asc ' ;;

实际上我们看到这里insert语句后主键和各个索引都上了隐含锁只是看不到,通过其他S2,S3,S4我们逐步把这些隐式锁转换为了显示锁。

4.2 delete语句通过主键删除数据

image.png

# T1时刻S1锁状态:
---TRANSACTION 94493, ACTIVE 3 sec
2 lock struct(s), heap size 1160, 1 row lock(s), undo log entries 1
MySQL thread id 11, OS thread handle 140737089492736, query id 567 localhost root
TABLE LOCK table `test`.`testimp4` trx id 94493 lock mode IX
RECORD LOCKS space id 501 page no 3 n bits 80 index PRIMARY of table `test`.`testimp4` trx id 94493 lock_mode X locks rec but not gap
Record lock, heap no 12 PHYSICAL RECORD: n_fields 6; compact format; info bits 32
0: len 4; hex 8000270f; asc ' ;;
1: len 6; hex 00000001711d; asc q ;;
2: len 7; hex 550000003b071b; asc U ; ;;
3: len 4; hex 8000270f; asc ' ;;
4: len 4; hex 8000270f; asc ' ;;
5: len 1; hex 61; asc a;;

# T2时刻S1锁状态:
---TRANSACTION 94493, ACTIVE 112 sec
4 lock struct(s), heap size 1160, 3 row lock(s), undo log entries 1
MySQL thread id 11, OS thread handle 140737089492736, query id 567 localhost root
TABLE LOCK table `test`.`testimp4` trx id 94493 lock mode IX
RECORD LOCKS space id 501 page no 3 n bits 80 index PRIMARY of table `test`.`testimp4` trx id 94493 lock_mode X locks rec but not gap
Record lock, heap no 12 PHYSICAL RECORD: n_fields 6; compact format; info bits 32
0: len 4; hex 8000270f; asc ' ;;
1: len 6; hex 00000001711d; asc q ;;
2: len 7; hex 550000003b071b; asc U ; ;;
3: len 4; hex 8000270f; asc ' ;;
4: len 4; hex 8000270f; asc ' ;;
5: len 1; hex 61; asc a;;

RECORD LOCKS space id 501 page no 4 n bits 80 index b of table `test`.`testimp4` trx id 94493 lock_mode X locks rec but not gap
Record lock, heap no 12 PHYSICAL RECORD: n_fields 2; compact format; info bits 32
0: len 4; hex 8000270f; asc ' ;;
1: len 4; hex 8000270f; asc ' ;;

# T3时刻S1锁状态:
---TRANSACTION 94493, ACTIVE 133 sec
4 lock struct(s), heap size 1160, 3 row lock(s), undo log entries 1
MySQL thread id 11, OS thread handle 140737089492736, query id 567 localhost root
TABLE LOCK table `test`.`testimp4` trx id 94493 lock mode IX
RECORD LOCKS space id 501 page no 3 n bits 80 index PRIMARY of table `test`.`testimp4` trx id 94493 lock_mode X locks rec but not gap
Record lock, heap no 12 PHYSICAL RECORD: n_fields 6; compact format; info bits 32
0: len 4; hex 8000270f; asc ' ;;
1: len 6; hex 00000001711d; asc q ;;
2: len 7; hex 550000003b071b; asc U ; ;;
3: len 4; hex 8000270f; asc ' ;;
4: len 4; hex 8000270f; asc ' ;;
5: len 1; hex 61; asc a;;

RECORD LOCKS space id 501 page no 4 n bits 80 index b of table `test`.`testimp4` trx id 94493 lock_mode X locks rec but not gap
Record lock, heap no 12 PHYSICAL RECORD: n_fields 2; compact format; info bits 32
0: len 4; hex 8000270f; asc ' ;;
1: len 4; hex 8000270f; asc ' ;;

RECORD LOCKS space id 501 page no 5 n bits 80 index d of table `test`.`testimp4` trx id 94493 lock_mode X locks rec but not gap
Record lock, heap no 12 PHYSICAL RECORD: n_fields 2; compact format; info bits 32
0: len 1; hex 61; asc a;;
1: len 4; hex 8000270f; asc ' ;;


实际上我们看到这里delete语句后,主键加了显示锁,这是因为数据查找阶段需要加显示锁,但是各个二级索引是由于维护而加的是隐式锁,我们通过S2,S3将其转换为了显示锁。

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
应用服务中间件 Apache
springmvc中报错Request processing failed;
springmvc中报错Request processing failed;
Vue3接口数据报错TypeError: target must be an object
Vue3接口数据报错TypeError: target must be an object
1707 0
|
Web App开发 人工智能 物联网
操作系统的演变:从单一到多元,再到云端
在数字时代的浪潮中,操作系统(OS)作为计算机系统的核心,经历了从简单到复杂,再到云化的演变。本文将探讨操作系统的发展历程,包括早期的批处理系统、多道程序设计、分时系统的出现,以及现代操作系统的多样化和云端化趋势。我们将看到,随着技术的不断进步,操作系统不仅在性能上得到了提升,其设计理念和应用场景也发生了根本性的变化。
ThreeJs控制模型的隐藏与显示
这篇文章讲解了如何在Three.js中通过代码控制3D模型的显示与隐藏状态。
255 3
ThreeJs控制模型的隐藏与显示
|
存储 NoSQL 测试技术
go最佳实践:如何舒适地编码
go最佳实践:如何舒适地编码
|
Java 调度 开发者
如何在Java中实现任务调度
如何在Java中实现任务调度
flutter 引用图片资源遇到的问题
flutter 引用图片资源遇到的问题
307 1
|
SQL 存储 JSON
《MySQL高级篇》七、性能分析工具的使用(慢查询日志 | EXPLAIN | SHOW PROFILING | 视图分析 )(四)
《MySQL高级篇》七、性能分析工具的使用(慢查询日志 | EXPLAIN | SHOW PROFILING | 视图分析 )
《MySQL高级篇》七、性能分析工具的使用(慢查询日志 | EXPLAIN | SHOW PROFILING | 视图分析 )(四)
|
Shell Linux Android开发
Android强大的原生调试工具adb的常用命令
Android强大的原生调试工具adb的常用命令
|
弹性计算 安全 网络安全
基于阿里云云平台快速实现网络入侵检测 (IDS) 及网络安全监视 (NSM)
数据包捕获是一个重要组件,可以实施网络入侵检测系统 (IDS) 并执行网络安全监视 (NSM)。 我们可以借助开源 IDS 工具来处理数据包捕获,并检查潜在网络入侵和恶意活动的签名。 使用网络观察程序提供的数据包捕获,可以分析网络中是否存在任何有害入侵或漏洞,Suricata 就是这样的一种开源工具,它是一个 IDS 引擎,可使用规则集来监视网络流量,每当出现可疑事件时,它会触发警报。 Suricata 提供多线程引擎,意味着它能够以更高的速度和效率执行网络流量分析,在本文中将会介绍到如何在 ECS 中使用Suricata来对网络进行入侵检测,同时并根据Suricata中给定的威胁规则匹配的
2141 0
基于阿里云云平台快速实现网络入侵检测 (IDS) 及网络安全监视 (NSM)