ClickHouse性能测试

简介: ClickHouse性能测试

ClickHouse简介

ClickHouse是战斗民族Yandex公司出品的OLAP开源数据库,简称CH,也有人简称CK,是目前市面上最快的OLAP数据库。性能远超Vertica、Sybase IQ等。

CH具有以下几个特点:

  1. 列式存储,因此数据压缩比高。
  2. 向量计算,且支持多核CPU并行计算,并且执行每个SQL时都力求榨干CPU性能。
  3. 基于Shared nothing架构,支持分布式方案。
  4. 支持主从复制架构。
  5. 兼容大部分SQL语法,其语法和MySQL尤其相近。
  6. 数据实时更新。
  7. 不支持事务,不适合高频更新数据。
  8. 建议多用宽表,但不建议总是查询整数据行中的所有列。

简言之,如果你有以下业务场景,可以考虑用CH:

  1. 海量数据,但又不希望单节点的存储空间消耗太高。
  2. 宽表,为了业务方便,可能会把很多相关数据列都整合到一个表里。
  3. 基于SQL的查询方式,提高程序的适用性和可移植性。

性能测试

我选用了CH官方提供的一个测试方案:SSBM (Star Schema Benchmark)。

测试机配置:

腾讯云CVM主机
- 标准型S5机型
- 4核16G
- 外挂500G SSD云硬盘

数据盘采用xfs文件系统,ioscheduler采用deadline方式:

[root@yejr.me]# cat /etc/fstab

/dev/vdb /data xfs defaults,noatime,nodiratime,nobarrier 0 0

[root@yejr.me]# cat /sys/block/vdb/queue/scheduler
[mq-deadline] kyber none

生成测试数据。

# 下载SSBM工具
[root@yejr.me]# git clone https://github.com/vadimtk/ssb-dbgen.git
[root@yejr.me]# cd ssb-dbgen
[root@yejr.me]# make

# 生成测试数据,机器性能和磁盘有限,所以指定 -s 100
[root@yejr.me]# ./dbgen -s 100 -T c
[root@yejr.me]# ./dbgen -s 100 -T p
[root@yejr.me]# ./dbgen -s 100 -T s
[root@yejr.me]# ./dbgen -s 100 -T l

[root@yejr.me]# wc -l *tbl
3000000 customer.tbl
1400000 part.tbl
200000 supplier.tbl

[root@yejr.me]# ls -l *tbl
-rw-r--r-- 1 root root 331529327 Mar 28 21:17 customer.tbl
-rw-r--r-- 1 root root 140642413 Mar 28 21:17 part.tbl
-rw-r--r-- 1 root root 19462852 Mar 28 21:17 supplier.tbl

创建测试表,根据CH官网提供的建表DDL直接创建即可,参考这里:Star Schema Benchmarkhttps://clickhouse.tech/docs/en/getting_started/example_datasets/star_schema/ )。

导入数据。

[root@yejr.me]# clickhouse-client --query "INSERT INTO customer FORMAT CSV" < customer.tbl
[root@yejr.me]# clickhouse-client --query "INSERT INTO part FORMAT CSV" < part.tbl
[root@yejr.me]# clickhouse-client --query "INSERT INTO supplier FORMAT CSV" < supplier.tbl
[root@yejr.me]# clickhouse-client --query "INSERT INTO lineorder FORMAT CSV" < lineorder.tbl

这是导入测试数据的耗时以及导完后表空间大小的数据。

表数据量 耗时(秒) tbl文件大小 表空间大小
customer 3,000,000 2.923 317M 116M
part 1,400,000 1.573 135M 25M
supplier 200,000 0.305 19M 7.7M
lineorder 600,037,902 837.288 67G 17G
lineorder_flat 600,037,902 2318.616
54G

只看最大的lineorder表,对tbl文件的压缩比可以达到4:1,如果是相对常规的OLTP数据库,其压缩比显然还要更高。

运行SSBM的几个标准查询耗时

SQL 耗时(秒) 扫描行数(10万) 返回行数
Q1.1 2.123 91.01 1
Q1.2 0.320 7.75 1
Q1.3 0.053 1.81 1
Q2.1 17.979 600.04 280
Q2.2 3.625 600.04 56
Q2.3 3.263 600.04 7
Q3.1 6.906 546.67 150
Q3.2 5.330 546.67 600
Q3.3 3.666 546.67 24
Q3.4 0.058 7.76 4
Q4.1 10.110 600.04 35
Q4.2 1.928 144.42 100
Q4.3 1.373 144.42 800

每次扫描这么多数据量,但这些统计分析为主的SQL查询耗时却并不大,足见CH的计算性能了。

今天先简单介绍到这里,以后有机会再继续分享。

            </div>
相关文章
|
6月前
|
缓存 负载均衡 应用服务中间件
uWSGI的配置及使用
uWSGI是一个功能强大的Web服务器和应用服务器,主要用于实现Python Web应用与Web服务器之间的通信。它遵循WSGI(Web Server Gateway Interface)规范,作为桥梁连接Web服务器(如Nginx)与Python应用(如Django、Flask)。相比开发环境中的简易服务器(如Django的runserver或Flask的Werkzeug),uWSGI在生产环境中具备更强的并发处理能力和更多高级特性,例如负载均衡、缓存等。通过支持多种启动方式(命令行或配置文件)及丰富参数配置,uWSGI可灵活部署于实际项目中,满足高性能需求。
765 4
|
9月前
|
SQL 缓存 分布式计算
vivo 湖仓架构的性能提升之旅
聚焦 vivo 大数据多维分析面临的挑战、StarRocks 落地方案及应用收益。 在 **即席分析** 场景,StarRocks 使用占比达 70%,查询速度提升 3 倍,P50 耗时从 63.77 秒缩短至 22.30 秒,查询成功率接近 98%。 在 **敏捷 BI** 领域,StarRocks 已完成 25% 切换,月均查询成功数超 25 万,P90 查询时长缩短至 5 秒,相比 Presto 提升 75%。 在 **研发工具平台** 方面,StarRocks 支持准实时数据查询,数据可见性缩短至 3 分钟,查询加速使 P95 延迟降至 400 毫秒,开发效率提升 30%。
vivo 湖仓架构的性能提升之旅
|
存储 SQL 监控
【Clickhouse 探秘】你真正知道 Clickhouse 吗?
ClickHouse 是一个开源的列式数据库管理系统,专为在线分析处理(OLAP)设计。它由 Yandex 开发并于 2016 年开源。ClickHouse 以其高性能、实时数据处理能力和易用性著称,广泛应用于大数据分析、日志处理和用户行为分析等领域。其主要特点包括列式存储、向量化执行、分布式架构、丰富的数据类型和 SQL 支持。
1399 4
|
存储 SQL 缓存
数据库测试|Elasticsearch和ClickHouse的对决
由于目前市场上主流的数据库有许多,这次我们选择其中一个比较典型的Elasticsearch来和ClickHouse做一次实战测试,让大家更直观地看到真实的比对数据,从而对这两个数据库有更深入的了解,也就能理解为什么我们会选择ClickHouse。
数据库测试|Elasticsearch和ClickHouse的对决
|
Java Linux 网络安全
NIFI在Linux服务区上的部署配置过程是什么?
【10月更文挑战第21天】NIFI在Linux服务区上的部署配置过程是什么?
466 2
|
Web App开发 安全 前端开发
X-Frame-Options响应头防点击劫持
X-Frame-Options响应头防点击劫持
756 6
|
存储 消息中间件 弹性计算
统一观测丨借助 Prometheus 监控 ClickHouse 数据库
统一观测丨借助 Prometheus 监控 ClickHouse 数据库
1950 90
统一观测丨借助 Prometheus 监控 ClickHouse 数据库
|
存储 SQL 分布式计算
大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示
大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示
1237 0
|
存储 SQL 网络协议
ClickHouse(05)ClickHouse数据类型详解
ClickHouse是一款分析型数据库,支持基础、复合和特殊数据类型。基础类型包括数值(Int、Float、Decimal)、字符串(String、FixedString、UUID)和时间(DateTime、DateTime64、Date)类型。数值类型如Int8-64和Float32-64,Decimal提供高精度计算。字符串中的FixedString有固定长度,UUID作为主键。时间类型最高精度到秒。复合类型有数组、元组、枚举和嵌套,其中数组和元组允许不同数据类型,枚举节省空间,嵌套类型是多维数组结构。特殊类型如Nullable表示可为空,Domain封装IPv4和IPv6。
1278 1
ClickHouse(05)ClickHouse数据类型详解
|
存储 分布式计算 Hadoop
ClickHouse(01)什么是ClickHouse,ClickHouse适用于什么场景
ClickHouse是一款高性能的列式存储OLAP数据库,由俄罗斯的Yandex公司开发,用于在线分析处理(OLAP)。它提供秒级大数据查询,适用于商业智能、广告流量等领域。ClickHouse速度快的原因包括列式存储、数据压缩、向量化执行和多线程分布式处理。然而,它不支持事务,不适合OLTP操作。相比Hadoop生态中的查询引擎,ClickHouse在大量数据查询上表现出色。一系列的文章详细介绍了ClickHouse的各个方面,包括安装、表引擎和使用场景。
2440 2
ClickHouse(01)什么是ClickHouse,ClickHouse适用于什么场景