【笔记】最佳实践—偏高并发场景的实践和优化

简介: 本文介绍了如何判断查询语句是否为“点查”,以及如何将查询优化为“点查”。 “点查”是应用访问OLTP数据库的一种常见方式,特点是返回结果前只扫描表中的少量数据,在淘宝上查看订单/商品信息对应到数据库上的操作就是点查。PolarDB-X对点查的响应时间(Response Time, RT)和资源占用做了较多优化,能够支持较高的吞吐,适合高并发读取场景使用。

什么是点查

顾名思义,“点查”是指只扫描少量数据的查询。注意这里说的是“扫描少量数据”而不是“返回少量数据”,比如select * from t1 order by c1 limit 1虽然只返回了一条数据,但如果c1上没有索引,需要先扫描t1上所有数据排序后才能返回结果,不符合“点查”的定义。

单机数据库中,最常见的点查是按照主键(Primary Key, PK)查询数据,通过扫描主键索引快速得到结果,平均只需要扫描logn条记录。如果通过其他条件查询,可以增加局部二级索引(Local Secondary Index,LSI),首先扫描局部二级索引得到主键,然后回表查出完整记录。特殊场景下,如果局部二级索引中包含了查询涉及的所有列,则回表的步骤也可以省略。

PolarDB-X是一个分布式数据库,为了将数据分散到不同数据节点(Data Node,DN)上,引入了分区表的概念,预先将数据切分成多个分区,然后建立分区和DN的映射,其中切分数据需要选取一个或多个列作为切分维度,这些列因此被称为“分区键”。分布式数据库中,查询性能除了与扫描的数据量线性相关,还与扫描的分片数量正相关,因此“点查”的定义还需要加上“扫描少量分区”。

PolarDB-X具备透明分布式能力,默认使用主键作为分区键,按照PK查询时首先定位到数据所在的分区,然后通过分区上的主键索引得到结果,性能最高。如果通过其他条件查询,可以增加全局二级索引(Global Secondary Index,GSI)。使用GSI优化查询的原理与LSI相同,首先查到主键然后回表获得完整记录,主要区别在于GSI本身也是一张分区表,数据与主表保存在不同DN上,回表操作大概率需要经过网络,回表代价高于单机数据库。因此,PolarDB-X支持创建聚簇索引来消除回表,达到与主键查询相同的性能。

注意事项

LSI和GSI本质上是以额外存储空间和写入开销为代价,换取查询性能的方案,使用时需要谨慎评估对写入性能的影响。索引表与主表的数据分布不同,为了保证GSI的数据与主表强一致,所有涉及GSI的写入操作都默认被包装在分布式事务中。相比没有GSI的场景,写入RT会增加2~3倍,同时由于索引表和主表混合并行写入,高并发写入场景下产生分布式死锁的概率会增加。综上所述,建议每张逻辑表上创建不超过3个GSI。

如何识别点查

如上所述,分布式数据库中的点查,是指扫描少量分片和数据的查询。通过查看执行计划,可以确认一个查询语句扫描的分片数,更多执行计划介绍请参见执行计划介绍。以下为一个点查的示例:


> explain select c_custkey, c_name, c_address from customer where c_custkey = 42;
+------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN                                                                                                                                            |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LogicalView(tables="TEST1_000002_GROUP.customer_IVgG_10", sql="SELECT `c_custkey`, `c_name`, `c_address` FROM `customer` AS `customer` WHERE (`c_custkey` = ?)") |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------+

EXPLAIN EXECUTE用于汇总展示DN上的执行计划,由此可以判断查询在DN上是否命中正确的索引。DN节点基于MySQL实现,执行计划与MySQL相同,更多介绍参考 MySQL 官方文档。以下展示一个点查的示例:


> explain execute select c_custkey, c_name, c_address from customer where c_custkey = 42;

+----+-------------+----------+------------+-------+---------------+---------+---------+-------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+---------+---------+-------+------+----------+-----------------+
| 1 | SIMPLE | customer | NULL | const | PRIMARY | PRIMARY | 4 | const | 1 | 100 | Using pk access |
+----+-------------+----------+------------+-------+---------------+---------+---------+-------+------+----------+-----------------+

如何将查询优化为点查

不是所有查询语句都可以优化为点查,例如没有任何条件的数据抽取查询select from t1,不合理的分页查询select from t1 where c1 = 1 limit 100000, 10,参数数量随着业务增长而增长的IN查询等。能够优化为点查的语句可以概括为以下两类:

  1. 固定范围扫描的查询:条件中包含等值条件(或可以简化为等值条件),小范围BETWEEN AND条件 ,参数数量固定的IN条件的查询;
  2. 结果行数固定的TopN查询:例如select from t1 where c1 > 42 limit 10 和 select from t1 order by c1 limit 10select * from t1 order by c1 limit 10

对于这两类查询,优化的思路是添加合适的索引,将全表扫描转化为索引扫描,示例如下:


CREATE TABLE `customer` (
`c_custkey` int(11) NOT NULL,
`c_name` varchar(25) NOT NULL,
`c_address` varchar(40) NOT NULL,
`c_nationkey` int(11) NOT NULL,
`c_phone` varchar(15) NOT NULL,
`c_acctbal` decimal(15,2) NOT NULL,
`c_mktsegment` varchar(10) NOT NULL,
`c_comment` varchar(117) NOT NULL,
PRIMARY KEY (`c_custkey`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 dbpartition by hash(`c_custkey`) tbpartition by hash(`c_custkey`) tbpartitions 4;
> explain select * from customer where c_phone = "11";
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].customer_[00-15]", shardCount=16, sql="SELECT `c_custkey`, `c_name`, `c_address`, `c_nationkey`, `c_phone`, `c_acctbal`, `c_mktsegment`, `c_comment` FROM `customer` AS `customer` WHERE (`c_phone` = ?)") |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

customer表上只有主键索引,因此虽然c_phone指定了等值条件,依然需要扫描全部分片,可以通过添加GSI来优化。


> create global index g_i_phone on customer(c_phone) dbpartition by hash(c_phone);
> explain select * from customer where c_phone = "11";
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(c_custkey="c_custkey", c_name="c_name", c_address="c_address", c_nationkey="c_nationkey", c_phone="c_phone", c_acctbal="c_acctbal", c_mktsegment="c_mktsegment", c_comment="c_comment") |
| BKAJoin(condition="c_custkey = c_custkey", type="inner") |
| IndexScan(tables="TEST1_000000_GROUP.g_i_phone_2CSp", sql="SELECT `c_custkey`, `c_phone` FROM `g_i_phone` AS `g_i_phone` WHERE (`c_phone` = ?)") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].customer_[00-15]", shardCount=16, sql="SELECT `c_custkey`, `c_name`, `c_address`, `c_nationkey`, `c_acctbal`, `c_mktsegment`, `c_comment` FROM `customer` AS `customer` WHERE ((`c_phone` = ?) AND (`c_custkey` IN (...)))") |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

添加GSI后,查询变为索引表上的点查加回表,回表操作只访问一个分片(执行计划中回表显示为主表上的全表扫描,这是因为确定需要扫描的主表分片依赖索引表的查询结果,explain阶段无法确定)。


> drop index g_i_phone on customer;
> create clustered index g_i_phone on customer(c_phone) dbpartition by hash(c_phone);
> explain select * from customer where c_phone = "11";
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| IndexScan(tables="TEST1_000000_GROUP.g_i_phone_fHmZ", sql="SELECT `c_custkey`, `c_name`, `c_address`, `c_nationkey`, `c_phone`, `c_acctbal`, `c_mktsegment`, `c_comment` FROM `g_i_phone` AS `g_i_phone` WHERE (`c_phone` = ?)") |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

使用聚簇索引代替GSI后,由于索引表中包含了主表上的所有列,不再需要回表,执行计划变为索引表上的点查。

以上示例阐述了通过索引优化点查性能的一般过程,其中的关键点是根据查询特征找到适合添加索引的列。对于包含多个条件比较复杂的查询,可以通过PolarDB-X内置的索引推荐功能来找到合适的LSI和GSI,详情请参考智能索引推荐


相关文章
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
在机器学习的实践中,构建一个高效的模型并非一蹴而就。本文将深入探讨如何通过精确的数据预处理、合理的特征选择、适当的模型构建以及细致的参数调优来提升模型的性能。我们将讨论数据清洗的重要性,探索特征工程的策略,分析不同算法的适用场景,并分享模型调参的实用技巧。目标是为读者提供一套系统的方法论,以指导他们在构建机器学习模型时能够更加高效和目标明确。
965 3
|
8月前
|
人工智能 弹性计算 运维
阿里云 MCP Server 开箱即用!
本文介绍了如何通过alibaba-cloud-ops-mcp-server和MCP(Model Context Protocol)实现AI助手对阿里云资源的复杂任务操作。内容涵盖背景、准备步骤(如使用VS Code与Cline配置MCP Server)、示例场景(包括创建实例、监控实例、运行命令、启停实例等),以及支持的工具列表和参考文档。借助这些工具,用户可通过自然语言与AI助手交互,完成ECS实例管理、VPC查询、云监控数据获取等运维任务,实现高效“掌上运维”。
|
8月前
|
缓存 编解码 监控
开发体育直播系统:用户管理机制与内容审核技术实现方案
本体育赛事直播系统基于ThinkPHP框架构建管理端,实现内容审核、用户管理和权限配置等功能。系统通过角色与权限设计(如普通用户、主播、专家等),结合JWT认证和多端统一登录方案,确保安全性和灵活性。内容管理方面,采用敏感词过滤、自动化审核及阿里云内容安全服务,保障直播质量。性能优化涵盖推流鉴权、H.265编码和缓存策略,提升用户体验。此外,系统还提供实时监控看板与用户行为分析,支持粘性分析和智能推荐,全方位满足体育直播需求。
|
SQL 存储 Linux
从配置源到数据库初始化一步步教你在CentOS 7.9上安装SQL Server 2019
【11月更文挑战第8天】本文介绍了在 CentOS 7.9 上安装 SQL Server 2019 的详细步骤,包括系统准备、配置安装源、安装 SQL Server 软件包、运行安装程序、初始化数据库以及配置远程连接。通过这些步骤,您可以顺利地在 CentOS 系统上部署和使用 SQL Server 2019。
518 1
|
弹性计算 应用服务中间件 网络安全
ECS服务器使用:SSL证书安装、配置和问题定位指南
本文简要介绍了SSL证书的生成与部署方法,包括使用OpenSSL生成自签名证书和从CA获取证书的步骤,以及在Apache和Nginx服务器上的配置方法。此外,还提供了测试证书是否生效的方法和常见问题的解决策略,帮助确保证书正确安装并解决调试过程中可能遇到的问题。
1228 0
|
监控 安全 API
WebSocket通过建立一个持久的连接实现实时双向通信
【5月更文挑战第2天】WebSocket通过建立一个持久的连接实现实时双向通信
506 4
|
前端开发 JavaScript API
前端技术栈方向研究报告
前端技术栈方向研究报告
394 0
|
IDE Unix 测试技术
CMake基础(10)使用ninja构建
CMake基础(10)使用ninja构建
2316 1
|
人工智能 并行计算 PyTorch
Stable Diffusion 本地部署教程:详细步骤与常见问题解析
【4月更文挑战第12天】本教程详细介绍了如何在本地部署Stable Diffusion模型,包括安装Python 3.8+、CUDA 11.3+、cuDNN、PyTorch和torchvision,克隆仓库,下载预训练模型。配置运行参数后,通过运行`scripts/run_diffusion.py`生成图像。常见问题包括CUDA/CuDNN版本不匹配、显存不足、API密钥问题、模型加载失败和生成质量不佳,可按教程提供的解决办法处理。进阶操作包括使用自定义提示词和批量生成图像。完成这些步骤后,即可开始Stable Diffusion的AI艺术创作。
2640 2
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp微信小程序的研学自习室选座与门禁系统的详细设计和实现
基于SpringBoot+Vue+uniapp微信小程序的研学自习室选座与门禁系统的详细设计和实现
201 0