最佳实践—如何选择实例规格

简介: 实例规格越高代表实例的性能越强,本文介绍了选择实例规格的方法。 PolarDB-X实例主要由计算节点和存储节点联合提供服务,单个节点按照CPU/MEM来划分实例的多种规格,多个节点一起组成PolarDB-X实例。实例规格请参见规格说明。

节点规格类型

系列 规格码 CPU和内存 最大存储 最大连接数 最大IOPS 特点
通用 polarx.x4.medium.2e 2核8G 3072GB 20000 4000 定位入门级,用于测试、体验和极小负载的场景。
polarx.x4.large.2e 4核16G 3072GB 20000 7000 CPU和MEM配比为1:4,复用计算资源享受规模红利,性价比高。
polarx.x4.xlarge.2e 8核32G 3072GB 20000 12000
polarx.x4.2xlarge.2e 16核64G 3072GB 20000 14000
独享 polarx.x8.large.2e 4核32G 3072GB 20000 9000 CPU和MEM配比为1:8,独占分配到的计算资源(如CPU),性能表现更加稳定。
polarx.x8.xlarge.2e 8核64G 3072GB 20000 18000
polarx.x8.2xlarge.2e 16核128G 3072GB 20000 36000
polarx.x8.4xlarge.2e 32核128G 3072GB 20000 36000
polarx.x8.4xlarge.2e 32核256G 3072GB 20000 72000
独占 polarx.st.8xlarge.25 60核470G 6144GB 20000 120000 独占物理机规格,可以有更好的资源使用保障。
polarx.st.12xlarge.25 90核720G 6144GB 20000 140000

实例规格=节点数×节点规格 (计算节点+存储节点)

举例如下:

polarx.x8.xlarge.2e独享规格,节点数为2个,性能数据如下:存储6TB (3072GB×2)、连接数40000 (20000×2)、最大IOPS 36000 (18000×2)。

按照存储容量选择

按照业务的存储空间估算逻辑:

  1. 业务的数据存储会随着时间而持续增加,可以预估1~2年内的业务增长量,判断需要的最大存储空间。
  2. PolarDB-X的数据存储分为:数据空间、系统文件空间、日志空间等,比较建议单节点的存储使用量保持在70%以下。

示例:

当前业务的存储空间为1500GB,每天新增约10GB,按照1年的业务预估来看,总计约5150GB的存储。按照使用量70%来计算,预估需要5150GB / 0.7 = 7357GB的存储空间诉求,如果按照独享规格polarx.x8.xlarge.2e (节点存储上限3TB),最后判断需要CEILING(7357GB/3072GB) = CEILING(2.39) = 3个节点。

按照并发量选择

按照业务的并发量的估算逻辑:

  1. PolarDB-X的节点规格资源限制,包含CPU、MEM、连接数、IOPS等。在面向事务型场景下,一般比较常见是CPU瓶颈为主,可通过业务的QPS预期进行估算和推导。
  2. 按照常见的sysbench/TPC-C的偏交易混合读写场景,单core估算可支持的QPS为1000~3000,按照独享规格polarx.x8.xlarge.2e单节点预估可支持1~2万的QPS。
    说明 业务的流量模型和通用benchmark会有比较多的差异,单节点的QPS仅供估算参考,比较建议基于业务流量进行实际压测。
  3. 常规的峰值流量,PolarDB-X建议单节点的资源使用量保持在70%以下。

示例:

当前业务的QPS峰值预估为10万QPS,预留70%的资源余量,预计需要支持14万QPS的资源,按照PolarDB-X单节点支持2万的能力来估算,预估需要7个节点。

按照多维度组合选择

示例:

当前业务的QPS峰值预估为10万QPS,当前业务的存储空间为1500GB,每天新增约10GB,按照1年的业务预估来看,总计约5150GB的存储。

建议的选择逻辑:

  1. 分布式数据库由多个节点组成,会有类似的木桶效应,比如突发流量导致个别节点达到资源瓶颈,会导致整体实例出现部分慢SQL的现象。因此,节点规格推荐独享型,建议生产环境8核64G起步,默认存储空间有3072GB(3TB)。
  2. 分别按照存储容量和并发量分别估算需要的节点数和CPU规格,比如例子中需要CPU 56核、存储7357GB,可以按照最小覆盖原则进行计算。存储空间最小需要3个节点覆盖,PolarDB-X提供了存储包的按量付费模式,存储需要的节点数可以作为下限,上限可以选择CPU核数的最小覆盖,可以选择7个节点的8核64G或4个节点的16核128G。
  3. 业务流量如果包含报表分析的场景,因涉及更多数据计算的代价,建议选择4个节点的16核128G,优先大节点规格,提高木桶边的上限。另外的场景下,建议选择7个节点的8核64G,更多的节点数可以支撑更大的存储空间,未来实例规格的升配也优先建议升配单个节点规格。
相关文章
|
9月前
|
人工智能 边缘计算 运维
Moodle + Websoft9:创新教育的强大组合,助力教学与学习
Moodle与Websoft9的结合,为未来课堂提供了强大的技术支撑。Moodle作为开源学习平台,拥有超800个插件,支持个性化教学、学习分析与移动优先功能;Websoft9通过云原生技术实现智能编排、混合云管理和合规保障。二者融合推动微服务化、AI教学和区块链存证等创新,适用于乡村教育、企业培训及老年教育等场景。方案显著降低硬件成本、提升运维效率,并提供开发者认证与社区支持,助力教育数字化转型,开创沉浸式学习新纪元。
256 5
|
前端开发 JavaScript API
前端框架新探索:Svelte在构建高性能Web应用中的优势
【10月更文挑战第26天】近年来,前端技术飞速发展,Svelte凭借独特的编译时优化和简洁的API设计,成为构建高性能Web应用的优选。本文介绍Svelte的特点和优势,包括编译而非虚拟DOM、组件化开发、状态管理及响应式更新机制,并通过示例代码展示其使用方法。
388 2
|
自然语言处理 监控 Cloud Native
探索微服务架构中的服务网格Service Mesh
【10月更文挑战第7天】服务网格(Service Mesh)是微服务架构中的关键组件,通过在每个服务实例旁部署Sidecar代理,实现服务间通信的管理、监控和安全增强。本文介绍了服务网格的基本概念、核心组件、优势及实施步骤,探讨了其在现代开发中的应用,并提供了实战技巧。
|
机器学习/深度学习 存储 定位技术
强化学习Agent系列(一)——PyGame游戏编程,Python 贪吃蛇制作实战教学
本文是关于使用Pygame库开发Python贪吃蛇游戏的实战教学,介绍了Pygame的基本使用、窗口初始化、事件处理、键盘控制移动、以及实现游戏逻辑和对象交互的方法。
|
监控 网络协议 网络架构
解决OSPF网络连接问题的综合指南
【8月更文挑战第24天】
364 0
|
弹性计算 人工智能 负载均衡
什么是阿里云服务器?云服务器的优缺点
阿里云是阿里巴巴集团的旗舰云计算品牌,它为全球各种规模的企业提供了云计算服务。阿里云服务器是阿里云的一项核心业务,它是一种可靠的云服务解决方案,具有许多优势。
1092 0
|
Kubernetes Cloud Native 测试技术
在云计算平台上部署Kubernetes:无缝管理和弹性扩展
Kubernetes已成为云计算平台上部署和管理容器化应用程序的首选解决方案。无论您选择使用Google Cloud Platform(GCP)、Amazon Web Services(AWS)、Microsoft Azure或其他云计算提供商,Kubernetes都为您提供了一种灵活、可移植且可扩展的方式来管理容器化应用程序。本文将深入探讨如何在云计算平台上部署Kubernetes,并为您提供一些实际的示例。
309 1
|
安全 Linux iOS开发
【智能家居】Home Assistant入门安装并内网穿透实现远程安全控制
【智能家居】Home Assistant入门安装并内网穿透实现远程安全控制
|
开发工具 Android开发 C++
[√]cocos2dx接入firebase后,点击消息通知栏闪退渲染异常
[√]cocos2dx接入firebase后,点击消息通知栏闪退渲染异常
354 0
|
传感器 JavaScript 物联网
MQTT 保持活动计时器:让您的设备保持连接
MQTT 保持活动计时器:让您的设备保持连接
824 0