基于RAG和LLM的水利知识大语言模型系统开发有感
在数字化时代,水利行业的智能化管理尤为重要。本文介绍了基于大语言模型(LLM)和检索增强生成(RAG)技术的水利知识问答系统的开发过程。该系统结合了前沿AI技术和水利专业知识,通过构建全面的水利知识库,优化用户体验,确保系统的灵活性和可扩展性。项目展示了AI技术在垂直领域的巨大潜力,为水利行业的智能化发展贡献力量。
技术人的知识输出利器:一套高质量知乎回答生成指令模板
本文提供一套系统化知乎高赞回答生成模板,结合AI工具(如DeepSeek、通义千问),助力技术人高效输出高质量内容。涵盖结构框架、质量检查、实战示例与合规建议,提升表达清晰度与内容价值,适用于经验分享、技术科普等多种场景,实现知识输出的标准化与高效化。
软考通关密钥:计算机系统核心原理全解剖——软件设计师必懂的底层逻辑
专为软考中级软件设计师打造,深入解析CPU架构、存储体系、进制转换、原码补码、浮点数、寻址方式、校验码、RISC/CISC、流水线、Cache、中断、I/O控制、总线及加密技术等核心知识点,结合真题剖析高频考点,构建计算机系统底层知识体系,提升应试与实践能力。
告别OOM!这款开源神器,如何为你精准预测AI模型显存?
在 AI 开发中,CUDA 显存不足常导致训练失败与资源浪费。Cloud Studio 推荐一款开源工具——AI 显存计算器,可精准预估模型训练与推理所需的显存,支持主流模型结构与优化器,助力开发者高效利用 GPU 资源。项目地址:github.com/st-lzh/vram-wuhrai
aipy实战:Deepseek-V3、Hunyuan&Qwen分析618平板攻略
Aipy是一款结合LLM与Python的智能工具,用户通过简单指令即可让LLM分析并生成代码,实时解决问题。本次v0.1.28版本新增联网搜索、案例分享等功能,并引入混元和Qwen模型。测评中,三个模型完成“618平板选购攻略”任务表现各异:deepseek-v3界面精美、信息全面但价格有偏差;hunyuan-turbos-latest信息不全但界面简洁;qwen-plus-latest推荐合理但数据失真。总体而言,Aipy在操作友好性和分析界面上显著提升,适合解决实际问题。
通义千问赋能CACA指南:构建智慧肿瘤诊疗新生态
本文探讨了如何利用阿里云通义千问大模型,结合中国抗癌协会(CACA)编撰的《中国肿瘤整合诊治指南》,打造新一代智能化临床决策支持系统。该系统通过分层架构设计,实现智能问答、临床决策支持和患者管理等功能,显著提升了医生的工作效率和治疗方案的科学性。
【Prompt Engineering:自我一致性、生成知识提示、链式提示】
自我一致性是提示工程技术之一,旨在改进链式思维提示中的解码方法。通过少样本CoT采样多个推理路径并选择最一致的答案,有助于提升涉及算术和常识推理任务的性能。例如,在解决年龄相关问题时,通过多次采样并挑选多数答案来提高准确性。此外,生成知识提示技术可预先生成相关信息辅助模型做出更准确预测,进一步优化模型表现。链式提示则通过将复杂任务分解为多个子任务来逐步处理,从而提高模型的透明度和可靠性,便于定位和改进问题。
探索通义语音团队的创新之作 —— FunAudioLLM模型评测
随着人工智能技术的飞速发展,语音识别和语音合成技术在各个领域得到了广泛应用。阿里云推出的“通义语音大模型FunAudioLLM”作为最新的语音处理技术,备受业界关注。本次评测将深入探讨通义语音大模型的功能、性能及其在实际应用中的表现。
通义万相AIGC技术测评报告
**摘要:** 通义万相是阿里云的AI绘画模型,提供清晰的部署指南和易用的API,适合新手。资源部署耗时约10分钟,API响应快,支持多种风格图片生成,适用于广告、媒体等领域。产品性价比高,功能包括文本到图像转换等,但仍有改进空间,如增加服装纹理选项、互动功能和更多API接口。建议完善功能、加强推广和降低成本以吸引更多用户。[链接](https://developer.aliyun.com/topic/tongyi-wanxiang?spm=a2c6h.27063436.J_6978680750.5.3a774f461hv8qD)
详解AI作画算法原理
AI作画算法运用深度学习和生成对抗网络(GAN),通过学习大量艺术作品,模拟艺术家风格。卷积神经网络(CNN)提取图像特征,GAN中的生成器和判别器通过对抗训练生成艺术图像。循环神经网络和注意力机制可提升作品质量。这种技术开创了艺术创作新途径。
函数计算X 通义千问快速部署 AI 个人助手应用
基于函数计算X 通义千问快速部署 AI 个人助手应用,用户可以根据需要选择不同角色的AI助手开启写作,角色包括职业顾问、小红书写手、心灵导师等,你可以尽情发挥创造力,通过限制提示词、字数、情节等各种条件生成短篇小说。
如何训练属于自己的“通义千问”呢?
大模型的风潮还未停歇,国内大模型的研发也正如火如荼地开展着。你试用过哪些大模型呢?你觉得哪一款产品最适合开发者呢?你有想过训练出自己的大模型吗?这不就来了! 通义千问开源!阿里云开源通义千问70亿参数模型,包括通用模型Qwen-7B和对话模型Qwen-7B-Chat,两款模型均已上线ModelScope魔搭社区,开源、免费、可商用。点击链接,立即开启模型开源之旅:https://modelscope.cn/models/qwen/Qwen-7B/summary
【OpenVI-AIGC系列之通义文生图1.0实战篇】用AI画兔子喜迎新春,AIGC有什么魔力?
AIGC指的是AI Generated Content,即由AI创作的内容,是继UGC(User Generated Content用户创造内容,如抖音b站等平台)、PGC(Professional Generated Content专业生产内容,如腾讯视频等)之后的新型内容生产方式。由于AIGC生成内容版权可以属于用户,在后续二创、不同平台内容分发方面优势明显。 up主们纷纷使用AIGC进行短视频内容创作,能绘画天马行空的场景、栩栩如生的人物。对于普通人来说,这些新技术可以提供更好的创意平台和更丰富的视觉体验,使个人更容易创建和分享自己的艺术作品,从而激发更多的创意和想象力。
💡 反常识观点:好的项目计划书不是写出来的,是问出来的【提示词工程】
深度解析项目计划书从"写作思维"到"问答思维"的认知革命,通过完整的AI指令框架和实战案例,帮助开发者掌握深度问答方法,提升项目决策质量和成功概率。文章强调AI不是写作工具,而是思维升级的助推器。
乘AIGC浪潮:把握万亿级机遇
AIGC正加速从技术走向产业落地,万亿市场规模催生全链条人才需求。北京、上海政策加码,算力基建完善,2025-2027年成关键窗口期。七大核心岗位——AIGC工程师、大模型训练师、AI工程师等全面爆发,覆盖技术到应用各层级,高薪抢人成常态。工信部认证加持,职业前景广阔,人人皆可入局,抢占AI时代新风口。
溯源技术革命:新型数字水印如何让数据“开口说话”,指认泄密源头?
当敏感信息遭偷拍、打印外泄或录音外传,隐形数字水印如“数据守护者”悄然溯源,精准锁定泄密源头。跨屏幕、纸质、音视频等多介质,实现“电-光-电”“电-纸-电”“电-空-电”全链路追踪。从军工到金融,从会议到协作,水印技术正构筑数据安全“最后一公里”防线。AIGC时代,更将融合AI与区块链,守护数字真实性。
《2核2G阿里云神操作!Ubuntu+Ollama低成本部署Deepseek模型实战》
本文详解如何在阿里云2核2G轻量服务器上,通过Ubuntu系统与Ollama框架部署Deepseek-R1-Distill-Qwen-1.5B大模型。涵盖环境搭建、Ollama安装、虚拟内存配置及模型运行全流程,助力开发者以极低成本实现AI模型云端运行。
零成本打造智能服务端:MCP采样的降本增效实践
本文介绍MCP采样机制,突破传统单向调用模式,实现服务器与客户端LLM的双向协作,提升扩展性、降低成本,支持灵活模型选择。通过FastMCP框架,打造高效分布式AI计算架构。
1张照片 2秒钟 一键变身3D数字人
LHM是一种基于单视角图像的端到端Transformer模型,结合SMPL-X人体模型与高斯渲染技术,可从一张照片生成可驱动的3D数字人。它采用Vision Transformer和Mae模型提取特征,并通过Body-Head Transformer融合2D与3D信息,输出具有动作能力的高精度3D人体模型。应用于动作重现、游戏角色生成及虚拟现实等领域,代码已开源并提供在线体验入口。
通义万相首尾帧图模型一键生成特效视频!
本文介绍了阿里通义发布的Wan2.1系列模型及其首尾帧生视频功能。该模型采用先进的DiT架构,通过高效的VAE模型降低运算成本,同时利用Full Attention机制确保生成视频的时间与空间一致性。模型训练分为三个阶段,逐步优化首尾帧生成能力及细节复刻效果。此外,文章展示了具体案例,并详细说明了训练和推理优化方法。目前,该模型已开源。
import dashscope报错,怎么解决
在使用 `dashscope` 库时,即使执行最简单的 `import` 操作也会报错。错误显示无法从 `dashscope.audio.asr.recognition` 导入名称 `Recognition`,提示可能与模块内部结构或版本兼容性有关。当前使用的 `dashscope` 版本为 1.23.2,Python 版本为 3.12。
网信办整治 AI 技术滥用,AI 企业如何合规运营
中央网信办开展为期3个月的“清朗・整治AI技术滥用”专项行动,旨在规范AI服务与应用,保障公民权益,促进行业健康发展。文章从算法备案、数据合规管理、内容审核、标识要求、重点领域风险防控、防止侵权、杜绝网络水军及保护未成年人权益八个方面,详细解析了AI企业在运营中需遵循的具体要求与措施,强调企业应主动落实合规,推动AI行业健康有序发展。
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
本文对比测试了通义千文、文心一言、智谱和讯飞等多个国产大模型在处理基础计数问题上的表现,特别是通过链式推理(COT)提示的效果。结果显示,GPTo1-mini、文心一言3.5和讯飞4.0Ultra在首轮测试中表现优秀,而其他模型在COT提示后也能显著提升正确率,唯有讯飞4.0-Lite表现不佳。测试强调了COT在提升模型逻辑推理能力中的重要性,并指出免费版本中智谱GLM较为可靠。
【Prompt Engineering 提示词工程指南】文本概括、信息提取、问答、文本分类、对话、代码生成、推理
本文介绍了使用提示词与大语言模型(LLM)交互的基础知识。通过调整参数如温度(Temperature)、最高概率词元(Top_p)、最大长度(Max Length)及停止序列(Stop Sequences),可以优化模型输出。温度参数影响结果的随机性;Top_p 控制结果的多样性;最大长度限制输出长度;停止序列确保输出符合预期结构。此外,频率惩罚(Frequency Penalty)和存在惩罚(Presence Penalty)可减少重复词汇,提升输出质量。提示词需包含明确指令、上下文信息、输入数据及输出指示,以引导模型生成理想的文本。设计提示词时应注重具体性、避免歧义,并关注模型的具体行为
工作秘密从“防不住”到“不敢泄”,震慑效果怎么实现的?
防得住≠不泄密。传统技术难控拍照、截屏等外泄行为,隐形水印将身份嵌入内容,实现全链路溯源,让每一次操作都可追踪,重塑安全心理防线。
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
TypeScript 终极入门指南:从零到精通 🚀
TypeScript是JavaScript的超集,添加静态类型系统,提升代码健壮性与可维护性。本教程涵盖基础类型、高级特性、面向对象编程及最佳实践,配代码示例与图解,助你快速掌握TS核心概念,轻松进阶前端开发!🎉
鸿蒙 HarmonyOS NEXT端云一体化开发-云数据库篇
云数据库采用存储区、对象类型、对象三级结构,支持灵活的数据建模与权限管理,可通过AGC平台或本地项目初始化,实现数据的增删改查及端侧高效调用。
鸿蒙 HarmonyOS NEXT星河版APP应用开发-ArkTS面向对象及组件化UI开发使用实例
本文介绍了ArkTS语言中的Class类、泛型、接口、模块化、自定义组件及状态管理等核心概念,并结合代码示例讲解了对象属性、构造方法、继承、静态成员、访问修饰符等内容,同时涵盖了路由管理、生命周期和Stage模型等应用开发关键知识点。
AI 调酒师上岗!Qwen3-Coder × 通义灵码完成 AI 调酒师项目实战开发
本课程通过“AI调酒师”项目实战,讲解如何使用通义灵码与Qwen3-Coder模型结合阿里云百炼平台,从需求分析、前端界面搭建、后端服务调用到整体部署的全流程开发。内容涵盖Bento UI设计、Tailwind CSS布局、语音识别与大模型内容生成,并结合MCP服务实现设计稿驱动开发,帮助开发者快速构建趣味AI应用,提升产品落地能力。
视觉感知RAG×多模态推理×强化学习=VRAG-RL
通义实验室自然语言智能团队发布并开源了VRAG-RL,一种视觉感知驱动的多模态RAG推理框架。它能像人一样“边看边想”,通过粗到细的视觉仿生感知机制,逐步聚焦关键区域,精准提取信息。VRAG-RL结合强化学习与多专家采样策略,优化检索与推理路径,在多个视觉语言基准数据集上表现出色,显著提升准确性和效率。项目已发布技术方案并开源代码,支持快速部署和二次开发。
如何在通义灵码里使用 MCP 能力
通义灵码支持MCP工具使用,通过模型自主规划实现工具调用,深度集成魔搭MCP广场,涵盖2400+热门服务。提供STDIO和SSE两种通信模式,适用于不同场景需求。用户可通过智能体模式调用MCP工具,完成如网页内容抓取、天气查询等任务。文档详细介绍了服务配置、使用流程及常见问题解决方法,助力开发者高效拓展AI编码能力。
不属于五种算法是否无需备案?一文读懂算法备案的真相
在数字化时代,算法成为互联网服务的核心技术。为应对算法歧视、大数据杀熟等问题,我国出台了算法备案制度,规范算法使用,保护用户权益。五种常见算法(生成合成、个性化推送、排序精选、检索过滤、调度决策)需备案,但其他类型算法在特定情况下也需备案,如涉及舆论属性或社会动员能力。未备案将面临法律责任,企业应严格遵守规定,确保合规运营。算法备案不仅是法律要求,更是企业对社会责任的体现。
Microsoft Edge 插件上架发布全流程指南
在前两篇文章中,我分别讲解了如何将产品上架到 Chrome Web Store 和 Firefox Add-ons。今天,我们将继续探索另一个重要的浏览器插件市场——Microsoft Edge 插件商店。如果你已经熟悉 Chrome 和 Firefox 插件的上架流程,那么这篇文章会让你更快上手 Edge 插件的发布。同时,我也会在关键环节与 Chrome 和 Firefox 进行对比,帮助你更好地理解三者的异同。
基于Qwen 2.5的世界科学智能大赛冠军方案
本方案基于通义千问模型,采用多阶段的Easy-to-Hard数据合成方法,模拟人类学习的由简单到困难的思路,逐阶段构造多样化的训练数据。数据生成阶段,训练数据的标签,引入了“Chain-of-Thought”思维链模式,生成多样化的推理路径,逐步对齐推理Scaling Law。训练阶段,采用了LoRA对通义千问32B模型在合成数据集上进行参数高效微调。推理阶段,使用了4bit低精度量化,并结合vLLM框架进行推理加速,最终达到准确性、效率和显存利用率的统一。
基于通义千问32B及RAG技术的CACA指南诊疗规范平台落地实践
本方案整合CACA智能导航系统与基于RAG的大模型医疗问答系统,旨在提供高效、精准的肿瘤诊治支持。通过指南AI导航、知识图谱查询等功能,优化医生诊疗流程,提升患者服务质量,实现医疗资源的有效利用。
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
大模型自动生成并运行代码的体验与优化
随着近两年大模型的不断发展,它们在各个领域展示出了惊人的能力,可以说是在各个领域到了“开花结果”的阶段。比如最近技术圈比较火的阿里云的通义千问已经可以自己写代码、跑代码了,作为开发者,我觉得这种能力不仅提高了开发效率,还推动了编程实践向更高层次的转变和发展。但是,在使用大模型自动生成代码时,我们也会面临一些挑战,其中之一是代码可能会曲解开发者的需求。那么本文就来分享一下个个人的体验以及如何优化这种情况。
生成X-Bogus的js代码,通过python调用生成
该文本是一个关于如何解析和执行JavaScript代码的步骤说明。主要内容包括: 1. 找到JavaScript文件的位置。 2. 下载代码并进行格式化。 3. 运行代码时会出现缺少变量错误,需要添加模拟环境的代码。 4. 指出主要的入口函数是`_0x5a8f25`,将其赋值给`window`。 5. 提供了整个JavaScript代码的长串内容。 6. 提供了一个Python脚本,用于调用这个JavaScript函数并处理返回的数据。 总结:这段文本描述了如何处理和运行一个JavaScript文件,以及使用Python来与这个脚本交互的示例。
技术小白能看懂的ChatGPT原理介绍
网上有关 ChatGPT 的原理介绍文章一大堆,要么是从 NLP 的历史开始讲起,要么是上数 GPT 3 代,内容都相对冗长和复杂。其实 ChatGPT 的原理并不难理解,我将以最通俗易懂的方式为技术小白解读,帮助大家更好地了解这一技术