暂时未有相关云产品技术能力~
公众号 Deephub-IMBA
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益;在某些环境中,这些利益可能与其他代理的利益相冲突,从而产生复杂的群体动态。
在深度学习和计算机视觉领域,数据增强是提升模型性能和泛化能力的关键技术。本文全面介绍了10个广泛使用的图像数据增强库,分析其特点和适用场景,帮助研究人员和开发者选择最适合需求的工具。这些库包括高性能的GPU加速解决方案(如Nvidia DALI)、灵活多功能的Albumentations和Imgaug,以及专注于特定框架的Kornia和Torchvision Transforms。通过详细比较各库的功能、特点和适用场景,本文为不同需求的用户提供丰富的选择,助力深度学习项目取得更好的效果。选择合适的数据增强库需考虑性能需求、任务类型、框架兼容性及易用性等因素。
构建预训练时间序列模型的主要挑战在于获取高质量、多样化的时间序列数据。目前有两种方法:迁移学习LLM(如GPT-4或Llama)和从零训练。尽管迁移学习可行,但效果有限;从零训练则依赖大量数据,如MOIRAI、TimesFM和TTM等模型所示。为解决这一难题,研究人员提出利用图像数据进行时间序列预测。
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
TimeMOE是一种新型的时间序列预测基础模型,通过稀疏混合专家(MOE)设计,在提高模型能力的同时降低了计算成本。它可以在多种时间尺度上进行预测,并且经过大规模预训练,具备出色的泛化能力。TimeMOE不仅在准确性上超越了现有模型,还在计算效率和灵活性方面表现出色,适用于各种预测任务。该模型已扩展至数十亿参数,展现了时间序列领域的缩放定律。研究结果显示,TimeMOE在多个基准测试中显著优于其他模型,特别是在零样本学习场景下。
Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
本文将深入探讨概率分布,详细阐述概率质量函数(PMF)、概率密度函数(PDF)和累积分布函数(CDF)这些核心概念,并通过实际示例进行说明。
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
本文介绍了一种名为MemLong的创新长文本处理方法,该方法通过整合外部检索器显著增强了大型语言模型处理长上下文的能力。MemLong采用轻量级设计,利用不可训练的外部记忆库存储历史上下文和知识,并通过检索相关的块级键值对增强模型输入。其技术优势包括分布一致性、高效训练策略及扩展的上下文窗口,能够在单个GPU上处理长达80k个token的文本,同时保持计算效率和内存控制。实验结果显示,MemLong在多个长文本基准数据集上表现出色,显著提升了语言建模能力和上下文学习效果。
大型语言模型(LLMs)在生成式AI领域备受关注,但其知识局限性和幻觉问题仍具挑战。检索增强生成(RAG)通过引入外部知识和上下文,有效解决了这些问题,并成为2024年最具影响力的AI技术之一。RAG评估需超越简单的实现方式,建立有效的性能度量标准。本文重点讨论了七个核心检索指标,包括准确率、精确率、召回率、F1分数、平均倒数排名(MRR)、平均精确率均值(MAP)和归一化折损累积增益(nDCG),为评估和优化RAG系统提供了重要依据。这些指标不仅在RAG中发挥作用,还广泛应用于搜索引擎、电子商务、推荐系统等领域。
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
Optuna,广受欢迎的超参数优化框架,近日发布了其第四个主要版本。自2018年问世以来,Optuna迅速成为机器学习领域的关键工具,目前拥有10,000+ GitHub星标、每月300万+下载量、16,000+代码库使用、5,000+论文引用及18,000+ Kaggle使用。Optuna 4.0引入了OptunaHub平台,支持功能共享;正式推出Artifact Store管理生成文件;稳定支持NFS的JournalStorage实现分布式优化;显著加速多目标TPESampler,并引入新Terminator算法。
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
尽管大规模语言模型(LLMs)在多种应用场景中表现出色,但其庞大的规模也带来了实际部署难题。本文探讨了通过模型压缩技术解决这些问题的方法,介绍了量化、剪枝和知识蒸馏三种主要压缩技术,并通过具体Python代码示例展示了如何将一个100M参数的文本分类模型压缩至52.8M参数,再通过4位量化进一步减小至原来的1/7,同时保持甚至提升性能。示例代码展示了从数据预处理、模型训练到评估的完整流程,证明了压缩技术的有效性。
在本文中,我们将探讨使用日期时间列提取有用信息的各种特征工程技术。
本文演示了如何在仅60行代码内(不包括标注和导入)对SAM2进行微调。
论文提出一种新的优化器Adam-mini,在不牺牲性能的情况下减少Adam优化器的内存占用。
选择正确的损失函数对于训练机器学习模型非常重要。不同的损失函数适用于不同类型的问题。本文将总结一些常见的损失函数,并附有易于理解的解释、用法和示例
在这篇文章中,我们将介绍使这些模型运作的秘密武器——一个由三个关键部分组成的法则:模型大小、训练数据和计算能力。通过理解这些因素如何相互作用和规模化,我们将获得关于人工智能语言模型过去、现在和未来的宝贵见解。
VQ-VAE 是变分自编码器(VAE)的一种改进。这些模型可以用来学习有效的表示。本文将深入研究 VQ-VAE 之前,不过,在这之前我们先讨论一些概率基础和 VAE 架构。
在本文中,我们将构建基础的无条件扩散模型,即去噪扩散概率模型(DDPM)。从探究算法的直观工作原理开始,然后在PyTorch中从头构建它。本文主要关注算法背后的思想和具体实现细节。
在本文中,我们将介绍模型架构、训练,并进行实际预测案例研究。将对TimesFM的预测能力进行分析,并将该模型与统计和机器学习模型进行对比。
**注意力机制中的掩码在深度学习中至关重要,如Transformer模型所用。掩码类型包括:填充掩码(忽略填充数据)、序列掩码(控制信息流)和前瞻掩码(自回归模型防止窥视未来信息)。通过创建不同掩码,如上三角矩阵,模型能正确处理变长序列并保持序列依赖性。在注意力计算中,掩码修改得分,确保模型学习的有效性。这些技术在现代NLP和序列任务中是核心组件。**
在NLP中,位置编码如RoPE、CoPE等增强模型对序列顺序的理解。RoPE通过旋转矩阵编码位置,适应不同距离的相对位置。线性旋转、NTK和YaRN是RoPE的变体,优化长序列处理。CoPE是动态的,根据序列内容调整位置编码,改善长距离依赖的捕捉。这些技术提升了模型在处理复杂语言任务时的性能。
在本文中,我们将探讨一种方法来解决这个问题,称为Elastic Weight Consolidation。EWC提供了一种很有前途的方法来减轻灾难性遗忘,使神经网络在获得新技能的同时保留先前学习任务的知识。
构建数据可视化代理解决了LLM(大型语言模型)在理解和生成定制图表时的局限性。代理提供DataFrame信息和自定义样式工具,简化与LLM的交互。选择了Plotly而非Matplotlib,因其交互性和Web渲染能力更适合现代可视化。代理通过元数据索引了解数据集详情,并根据样式指示生成符合特定审美的图表。通过ReActAgent和Groq模型,代理能理解用户指令,生成准确的Plotly代码,从而创建定制图表,提高了数据可视化的效率和准确性。
有很多个框架和包可以优化LLM推理和服务,所以在本文中我将整理一些常用的推理引擎并进行比较。
本文总结了2024年6月后两周发表的一些最重要的大语言模型论文。这些论文涵盖了塑造下一代语言模型的各种主题,从模型优化和缩放到推理、基准测试和增强性能。
新框架提出智能路由选择在强弱语言模型间,利用用户偏好的学习来预测强模型胜率,基于成本阈值做决策。在大规模LLMs部署中,该方法显著降低成本而不牺牲响应质量。研究显示,经过矩阵分解和BERT等技术训练的路由器在多个基准上提升性能,降低强模型调用,提高APGR。通过数据增强,如MMLU和GPT-4评审数据,路由器在GSM8K、MMLU等测试中展现出色的性能提升和成本效率。未来将测试更多模型组合以验证迁移学习能力。该框架为LLMs部署提供了成本-性能优化的解决方案。
在自然语言处理领域,人们经常需要比较字符串,这些字符串可能是单词、句子、段落甚至是整个文档。如何快速判断两个单词或句子是否相似,或者相似度是好还是差。这类似于我们使用手机打错一个词,但手机会建议正确的词来修正它,那么这种如何判断字符串相似度呢?本文将详细介绍这个问题。
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
这篇文章探讨了高斯过程作为解决小数据问题的工具,介绍了多元高斯分布的基础和其边缘及条件分布的性质。文章通过线性回归与维度诅咒的问题引出高斯过程,展示如何使用高斯过程克服参数爆炸的问题。作者通过数学公式和可视化解释了高斯过程的理论,并使用Python的GPy库展示了在一维和多维数据上的高斯过程回归应用。高斯过程在数据稀疏时提供了一种有效的方法,但计算成本限制了其在大数据集上的应用。
在本文中,我们将介绍使用私有数据优化检索增强生成(RAG)的四种策略,可以提升生成任务的质量和准确性。通过使用一些优化策略,可以有效提升检索增强生成系统的性能和输出质量,使其在实际应用中能够更好地满足需求。
Theta方法整合了两个基本概念:分解时间序列和利用基本预测技术来估计未来的价值。
这里有15款免费工具推荐:NetworkX(Python基础),Graph-tool(C++速度),Graphviz(可视化库),ipycytoscape(Jupyter集成),ipydagred3,ipySigma(NetworkX + Web),Netwulf(交互式),nxviz(Matplotlib绑定),Py3plex(复杂网络分析),Py4cytoscape(Python+Cytoscape),pydot(Graphviz接口),PyGraphistry(GPU加速),python-igraph,pyvis(交互式图形),SNAP(大规模网络分析)。绘制和理解网络图从未如此简单!
大语言模型(LLMs)在近年来取得了快速发展。本文总结了2024年6月上半月发布的一些最重要的LLM论文,可以让你及时了解最新进展。
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
机器学习运维(MLOps)是一组用于自动化和简化机器学习(ML)工作流程和部署的实践。所选择的部署策略可以显著影响系统的性能和效用。所以需要根据用例和需求,采用不同的部署策略。在这篇文章中,我们将探讨三种常见的模型部署策略:批处理、实时和边缘计算。
这是2024年4月《SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion》中提出的新模型,采用集中策略来学习不同序列之间的交互,从而在多变量预测任务中获得最先进的性能。
本文探讨了一种名为“abliteration”的技术,该技术能够在不重新训练大型语言模型(LLM)的情况下移除其内置的安全审查机制。通常,LLM在接收到潜在有害输入时会拒绝执行,但这一安全特性牺牲了模型的灵活性。通过对模型残差流的分析,研究人员发现可以识别并消除导致拒绝行为的特定方向,从而允许模型响应所有类型的提示。
在当今数据驱动的决策过程中,因果推断和增益模型扮演了至关重要的角色。因果推断帮助我们理解不同变量间的因果关系,而增益模型则专注于评估干预措施对个体的影响,从而优化策略和行动。然而,要提高这些模型的精确度和适应性,引入元学习器成为了一个创新的解决方案。元学习器通过将估计任务分解并应用不同的机器学习技术,能够有效增强模型的表现。接下来,我们将详细探讨如何利用元学习优化增益模型的性能,特别是通过S-Learner、T-Learner和X-Learner这几种估计器。
加速机器学习模型训练是工程师的关键需求。PyTorch Profiler提供了一种分析工具,用于测量CPU和CUDA时间,以及内存使用情况。通过在训练代码中嵌入分析器并使用tensorboard查看结果,工程师可以识别性能瓶颈。Profiler的`record_function`功能允许为特定操作命名,便于跟踪。优化策略包括使用FlashAttention或FSDP减少内存使用,以及通过torch.compile提升速度。监控CUDA内核执行和内存分配,尤其是避免频繁的cudaMalloc,能有效提升GPU效率。内存历史记录分析有助于检测内存泄漏和优化批处理大小。
IBM研究人员提出Tiny Time Mixers (TTM),这是一个轻量级、基于mlp的TS模型,参数量小于1M,在M4数据集上表现优于大型SOTA模型,且具备优秀的零样本预测能力。TTM无注意力机制,利用TSMixer进行多级建模,自适应补丁和频率前缀调整等创新特性提升性能。预训练和微调阶段各有独特设计,预训练仅用单变量序列,微调时学习多变量依赖。TTM在某些任务中证明了小模型的优越性,且模型已开源。
该文探讨了缺失值插补的不同方法,比较了它们恢复数据真实分布的效果。文章指出,处理插补尤其在小样本或复杂数据时是个挑战,需要选择能适应数据分布变化的方法。文中介绍了完全随机缺失(MCAR)、随机缺失(MAR)和非随机缺失(MNAR)三种机制,并以一个简单的例子展示了数据分布变化。文章通过比较均值插补、回归插补和高斯插补,强调了高斯插补在重现数据分布方面更优。评估插补方法时,不应仅依赖于RMSE,而应关注分布预测,使用如能量距离这样的指标。此外,即使在随机缺失情况下,数据分布也可能因模式变化而变化,需要考虑适应这些变化的插补方法。
这篇文章除了介绍线性模型在减肥app预测中的不切实际性,还探讨了不同统计分布在体重管理和数据分析中的应用。文章提到了正态分布和泊松分布,前者常用于描述围绕平均值对称分布的连续数据,如体重;后者适合计数数据,如体重变化次数。正态分布以其钟形曲线闻名,泊松分布则描述独立事件的数量。文章还简要介绍了卡方分布在检验分类变量关系时的作用。最后,文章指出了在线性回归中假设数据正态分布的原因,包括便于统计推断和最小化估计误差。
Block Transformer是一种优化自回归语言模型推理效率的新架构,通过块级自注意力来平衡全局和局部依赖,提高吞吐量。模型包含嵌入器、块解码器和令牌解码器,其中块解码器处理全局依赖,令牌解码器处理局部细节。这种方法减轻了KV缓存的延迟和内存开销,尤其是在长序列处理中。实验显示,尽管Block Transformer参数量增加,但推理速度显著提升,尤其是在大块长度和优化的组件比例下,实现了性能与速度的平衡。
在3D医学图像分割领域,尽管出现了多种新架构和方法,但大多未能超越2018年nnU-Net基准。研究发现,许多新方法的优越性未经严格验证,揭示了验证方法的不严谨性。作者通过系统基准测试评估了CNN、Transformer和Mamba等方法,强调了配置和硬件资源的重要性,并更新了nnU-Net基线以适应不同条件。论文呼吁加强科学验证,以确保真实性能提升。通过nnU-Net的变体和新方法的比较,显示经典CNN方法在某些情况下仍优于理论上的先进方法。研究提供了新的标准化基线模型,以促进更严谨的性能评估。
该文探讨了AI代理的发展,特别是ChatGPT等模型如何展示了AI系统的潜力。文章提出从提示工程转向代理工程,定义了代理能力需求,并提出一个框架来设计和实施AI代理。代理工程涉及明确代理的任务、所需行动、能力及熟练度,通过现有技术满足这些需求。文章强调了广泛和特定知识的熟练度、精确信息获取以及代理的结构设计和协调。随着技术进步,该框架为AI代理的未来发展提供了基础。