爱专研的高德技术小哥
本文介绍了高德地图中POI深度信息接入在平台化过程中的一些思考和实践,从最开始的单体应用,随着业务发展面临挑战,从业务角度提出解决问题的思路和方案,进而转化成技术设计并落地实现的过程。
本文小结了高德车载导航在版本自更新演进过程中二进制差分解决方案的性能优化实践。
对于卫星影像的使用方式,高德经历了由前端用户展示,到人工数据作业参考,再到主动发现更新地图数据的进化过程,这同时也是我们不断挖掘影像数据价值的过程。本文会介绍高德视觉团队将卫星影像从被动参考升级为主动发现的过程中的探索和实践。
本文小结了高德技术团队在车载导航自研图片格式解决方案上的探索和实践,希望对大家有所启发。
本文较系统的介绍了手机、车机导航定位中使用的关键技术,以及高德地图在这些关键技术中的进展。最后,讨论了在传统导航向自动驾驶的演进过程中,定位技术的演进路径。
高德算法工程一体化的建设过程也就是满足业务从初创期到成熟期迭代的过程。
高德共享业务中心联合当地一家合作伙伴,开发了一款专门为医护人员免费打车的工具,同时发起志愿者司机招募活动,让更多志愿者有机会加入进来一起抗击疫情。
本文将主要介绍针对用户反馈的文本情报,如何利用机器学习的方法来提高大量用户数据的处理效率、尽可能实现自动化的解题思路。
高德地图技术团队希望打造一套快速精准的UI解决方案,通过自动化的方式生产UI代码,解放研发生产力的同时满足客户需求。
在过去的几年中,高德网络定位算法经历了从无监督算法向有监督算法的演进,从定位精度、定位能力透出等方面都有了显著的提升。
准备以重构工作中容易产生误区的地方或容易被忽视的重点来聊聊,既不重复网上千篇一律的各种方案资料,也对重构工作有参考价值。
本文介绍了图像分割在高德地图从解决一些小问题的“手段”,逐步成长为高度自动化数据生产线的强大技术助力。
随着高德地图技术团队的扩张和业务的复杂化,越来越碎片化的代码以及代码之间复杂的依赖关系带来诸多维护性问题
POI名称的自动生成就格外重要,而机器对商户挂牌的语义理解又是其中关键的一环。本文主要介绍相关技术方案在高德的实践和业务效果。
我们会选取几个地图搜索文本处理中特有的文本分析技术做出分析,包括城市分析,wherewhat分析,路径规划,并对未来做一下展望。
高德 App 进行 Bundle 化后,由于业务的复杂性,Bundle 的数量非常多。而这带来了一个新的问题——Bundle 之间的依赖关系错综复杂,需要进行管控,使 Bundle 之间的依赖保持在架构设计之下。
本文就高德地图搜索的地理文本处理,介绍相关的技术在过去几年的演进。我们将选取一些点分上下两篇进行介绍,上篇主要介绍搜索引擎中一些通用的query分析技术,包括纠错,改写和省略。
本文主要介绍了高德在服务单元化建设方面的一些实践经验,服务单元化建设面临很多共性问题,如请求路由、单元封闭、数据同步,有的有成熟方案可以借鉴和使用,但不同公司的业务不尽相同,要尽可能的结合业务特点,做相应的设计和处理。
阿里巴巴高级无线开发专家宋照春在高德技术专场做了题为《高德客户端及引擎技术架构演进与思考》的演讲,主要分享了高德地图客户端技术架构沿着「上漂下沉」、「模块化、Bundle化」的思路演进所做的一系列架构升级中的经验和思考。
本文将主要介绍高德在高精地图地面标识识别上的技术演进,这些技术手段在不同时期服务了高精地图产线需求,为高德地图构建高精度地图提供了基础的技术保证。
在地图 JSAPI 中,标注的展示效果及性能也是需要重点解决的问题。
对于工程团队来说,构建一套具有可持续性的、多方面质量保证的交付体系建设,能够为业务价值的快速交付搭建起高速公路,也能为交付过程中的质量起到保驾护航的作用。
由于导航应用中的地图渲染、导航等核心功能对性能要求很高,所以高德地图客户端中大量功能采用 C++ 实现。随着业务的飞速发展,仅地图引擎库就有40多个模块,工程配置极其复杂,原有的构建及持续集成技术已无法满足日益增长的需求变化。
阿里巴巴资深技术专家孙蔚在高德技术专场做了题为《高德亿级流量接入层服务的演化之路》的演讲,主要分享了接入层服务在高德业务飞速发展过程中,为应对系统和业务的各方面挑战所做的相关系统架构设计,以及系统在赋能业务方面的思考和未来规划。
阿里巴巴高级地图技术专家方兴在高德技术专场做了题为《向场景化、精细化演进的定位技术》的演讲,主要分享了高德在提升定位精度方面的探索和实践。
我和团队一直是做车载导航应用开发,面向的对象是客户。不同的客户对于应用的UI或者主题是有不同需求的,也就是说针对不同客户,不同渠道的版本,需要有不同的应用主题。
高德地图首席科学家任小枫在2019杭州云栖大会高德技术专场分享了题为《视觉智能连接真实世界》的演讲,本文根据现场内容整理而成。
导读 在构建面向企业项目、多端的内容聚合类在线服务API设计的过程中,由于其定制特点,采用常规的restful开发模式,通常会导致大量雷同API重复开发的窘境,本文介绍一种GraphQL查询语言+网关编排联合的实践,解决大量重复定制的问题。
导读 POI是“Point of interest”的缩写,中文可以翻译为“兴趣点”。在地图上,一个POI可以是一栋房子、一个商铺、一个公交站、一个湖泊、一条道路等。在地图搜索场景,POI是检索对象,等同于网页搜索中的网页。
导读 随着移动互联网的发展,行业内衍生了基于移动平台的各类解决方案。其中,设备规模化管理的云控能力是各互联网公司在设备集群控制背景下的诉求。因此涌现了大批提供类似解决方案的平台。如:阿里系的阿里云MQC、阿里无线和菜鸟Nimitz等,阿里之外的有Testin、百度MTC、腾讯WeTest、华为、三星等等。
导读 近年来,物联网市场竞争激烈,从物联网平台厂商,设备生产商,到服务提供商,都在涌入这片红海。预计到2020年,全球联网设备数量将达到260亿个,年复合增长率达到20%;全球联网设备带来的数据将达到44ZB,这一数据将是2012年的22倍,年复合增长率48%。
导读 2018年十一当天,高德DAU突破一个亿,不断增长的日活带来喜悦的同时,也给支撑高德业务的技术人带来了挑战。如何保障系统的稳定性,如何保证系统能持续的为用户提供可靠的服务?是所有高德技术人面临的问题,也是需要大家一起解决的问题。
导读 高德定位业务包括云上定位和端上定位两大模块。其中,云上定位主要解决Wifi指纹库、AGPS定位、轨迹挖掘和聚类等问题;端上定位解决手机端和车机端的实时定位问题。近年来,随着定位业务的发展,用户对在城市峡谷(高楼、高架等)的定位精度提出了更高的要求。
导读 按照现在流行的互联网分层架构模型,最简单的架构当属Web响应层+DB存储层的架构。从最开始的单机混合部署Web和DB,到后来将二者拆分到不同物理机以避免共享机器硬件带来的性能瓶颈,再随着流量的增长,Web应用变为集群部署模式,而DB则衍生出主从机来保证高可用,同时便于实现读写分离。
导读 驾车导航服务是数字地图提供的核心功能。通常而言,用户在发起导航之前会对比高德前端展示的三条路线(如下图),以决定按照哪条路线行驶。 而预估到达时间是用户参考的最为重要的指标之一。给定一条路线,对应的预估到达时间的计算需要两组信息输入,分别是实时路况信息和历史速度信息(历史速度信息指的是对应的平均通行时间)。
本文总结了一套与Java函数相关的编码规则,旨在给广大Java程序员一些编码建议,有助于大家编写出更优雅、更高质、更高效的代码。这套编码规则,通过在高德采集部门的实践,已经取得了不错的成效。
本文总结了一套与Java函数相关的编码规则,旨在给广大Java程序员一些编码建议,有助于大家编写出更优雅、更高质、更高效的代码。这套编码规则,通过在高德采集部门的实践,已经取得了不错的成效。
导读 与手机导航不同,高德地图的车机版(AMAP AUTO)直接面对各大车厂和众多设备商。这些B端用户采用的硬件参数参差不齐,提出的业务需求涉及到渲染中诸多复杂技术的应用,这对渲染性能提出了极高的要求。
本文将首先介绍视觉和惯导的主流设备,视觉惯导融合的框架和关键技术,高德在基于视觉方式生成高精地图道路标志和地面标识要素的计算方案,最后总结了这项技术在高精地图精度上所面临的挑战和未来发展方向。
郝仁杰,高德地图无线开发专家。在7月13日落幕的2019年ArchSummit峰会上就高德地图近几年的App架构演化和实践进行了分享。
本文介绍 Java 字节码技术在 Android 模块依赖分析中的应用。文中的“字节码”特指“Java 字节码”。
本文主要介绍机器学习技术在高德的地图数据生产的具体应用,这些技术方案和设计都已经过验证,取得了不错的效果,并且为高德地图数据的快速更新提供了基础的技术保证。
起点抓路,作为路线规划的初始必备环节,其准确率对于路线规划质量及用户体验至关重要。本文将介绍高德地图针对起点抓路准确率的提升,尤其是在引入机器学习算法模型方面所进行的一些探索与实践。
C++内存泄漏问题的分析、定位一直是Android平台上困扰开发人员的难题。因为地图渲染、导航等核心功能对性能要求很高,高德地图APP中存在大量的C++代码。解决这个问题对于产品质量尤为重要和关键,高德技术团队在实践中形成了一套自己的解决方案。
本文将主要介绍机器学习在高德搜索建议的具体应用,尤其是在模型优化方面进行的一些尝试,这些探索和实践都已历经验证,取得了不错的效果,并且为后来几年个性化、深度学习、向量索引的应用奠定了基础。