暂无个人介绍
structured steaming因其低时延和提供的SQL API等特性被越来越多的企业所使用,作为实时计算的首选。 本次分享structured steaming的使用,包含spark 2.4 structured streaming的新特性,API原理和使用场景等的介绍。
Spark因其统一引擎、性能、易用性等特点备受青睐,将大数据处理引擎迁移到Spark已经成为一种趋势(比如将Hive迁移到SparkSQL),很多大公司也正在实践。
普通群容量已满足不了Spark群众日益增长的热情,因此我们做了一个重要的决定,将全部群成员转移到企业群
Relational Cache的强大功能赋予了Spark更多的可能,通过Relational Cache,用户可以提前将任意关系型数据(Table/View/Dataset)cache到任意Spark支持的DataSource中,并支持灵活的cache数据组织方式,基于此,Relational Cache可以在诸多应用场景中帮助用户加速Spark数据分析。
本次SAIC含盖了数据工程与数据科学的内容,包括AI产品化的最佳实践案例分享:超大数据规模下,利用流数据处理确保训练数据更新的时效性,完成数据质量监控,测试以及数据模型服务。也有对流行的软件框架如TensorFlow,SciKit-Learn,Keras,PyTorch,DeepLearning4J,BigDL以及Deep Learning Pipelines等,分别进行深入的主题分享探讨。
数据中台应该是什么样子?如何基于MLSQL完成数据中台的构建? MLSQL是如何基于Spark来完成这些扩展的? Databricks公司新开元项目Delta对于数据和机器学习的意义何在?
除了Spark + AI主题外,本次峰会,为开发者,数据科学家以及探寻最佳数据与人工智能工具来构架创新型产品的技术实践者们,提供了一站式交流的独特体验,超过了5000名来自世界各地的工程师,数据科学家,人工智能专家,研究学者以及商务人士,加入到了这3天的深度交流与学习中。
Delta Lake 是 Databricks 推出的一种新型的数据湖方案,解决了传统数据湖方案中的诸多痛点。其中的核心组件 Delta 也于近期开源。本次分享将围绕 Delta Lake 和 Delta 的诸多细节展开,如 Delta Lake 的适用场景、技术优势,Delta 的原理实现以及一些高级特性等,并就现有解决方案做横向对比。
4 月 24 日,Databricks 在 Spark + AI 峰会上开源了一个新产品 Koalas,它增强了 PySpark 的 DataFrame API,使其与 pandas 兼容。本文转自:https://www.infoq.cn/article/tvGrtwJxCR1kQDs_kqa4
Spark + AI 北美峰会 2019 盛况依然,这两天正如火如荼。大会的主题是 Build,Unify,Scale,对此如何理解?砖厂这次有哪些重磅消息和重要发布,并作如何解读?Spark 过去几年发展的基调和线索是什么,从这次峰会上又如何看出 Spark 在未来几年的发展端倪?阿里巴巴计算平台.
Spark AI 北美峰会的第一天,坊间传闻被证实,Databrics(俗称数砖,亦称砖厂)的杀手锏 Delta 产品特性作为 Delta Lake 项目开源!会前,笔者有幸同砖厂的两位大佬李潇和连城做了个线下交流,谈到 Delta 时被告知会有相关重磅在大会上宣布,但却没想到是开源出去。
Spark架构和设计上的优秀毋庸置疑,从一出道便抢了 Hadoop 的 C 位。在开源大数据的黄金十年一时风头无两,在当下人工智能时代仍然能够与时俱进,通天之处不遑多言,美中不足之处也有不少。小的方面,比如调度模型跟 MapReduce 这种计算范式过于耦合,Spark 最近引入 Barrier 调度模式就是为了支持深度学习这种新的计算类型,所幸在于对框架的改动不会伤筋动骨;有些缺陷则不然,影响全局,调整起来绝非易事。
Flink是标准的实时处理引擎,而且Spark的两个模块Spark Streaming和Structured Streaming都是基于微批处理的,不过现在Spark Streaming已经非常稳定基本都没有更新了,然后重点移到spark sql和structured Streaming了。
本文转发自技术世界,原文链接 http://www.jasongj.com/spark/adaptive_execution/ 1 背 景 Spark SQL / Catalyst 和 CBO 的优化,从查询本身与目标数据的特点的角度尽可能保证了最终生成的执行计划的高效性。
开源大数据周刊-2018年07月13日 第93期
本次发布包括: 修改了界面的版本选择,新增了2.0.0版本,隐去了1.x版本(用SDK仍然可以继续创建,但我们强烈建议升级到最新版本),合并了Hadoop和HBase的版本选择。 Hadoop版本进行了升级,2.6.0 -> 2.7.2 集群JDK版本升级,1.7.0 -> 1.8.0 新增
一键扩容E-MapReduce集群,运维SO EASY 谈到集群运维,我们不得不说说集群的扩容。随着业务量的增长,数据也会跟着增长,这样我们的集群规模也不得不跟着进行扩容。那么集群如何进行扩容呢,我们分下面的两个场景跟大家介绍一下 1. IDC机房集群扩容。当我们集群需要扩容的时候,一般会经过下