FPGA云服务器

首页 标签 FPGA云服务器
# FPGA云服务器 #
关注
1534内容
|
3月前
|
硬件加速器中的神经网络
硬件加速器中的神经网络指的是通过专门设计的硬件设备来加速深度神经网络(DNN)和其他机器学习模型的训练和推理过程。
|
3月前
|
用QEMU模拟运行uboot从SD卡启动Linux
用QEMU模拟运行uboot从SD卡启动Linux
|
4月前
| |
来自: 弹性计算
阿里云服务器架构区别解析:从X86计算、Arm计算到高性能计算架构的区别参考
在我们选择阿里云服务器的架构时,选择合适的云服务器架构对于提升业务效率、保障业务稳定至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供参考和选择。
|
4月前
|
基于FPGA的BPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于Vivado2019.2,在原有BPSK调制解调基础上新增高斯信道及误码率统计模块,可测试不同SNR条件下的误码性能。仿真结果显示,在SNR=0dB时误码较高,随着SNR增至5dB,误码率降低。理论上,BPSK与2ASK信号形式相似,但基带信号不同。BPSK信号功率谱仅含连续谱,且其频谱特性与2ASK相近。系统采用Verilog实现,包括调制、加噪、解调及误码统计等功能,通过改变`i_SNR`值可调整SNR进行测试。
|
4月前
|
深度学习之适应硬件的神经网络
深度学习的适应硬件的神经网络设计旨在最大限度地利用特定硬件平台的计算和存储能力,提高模型的执行效率和性能。这些硬件包括图形处理单元(GPU)、张量处理单元(TPU)、现场可编程门阵列(FPGA)和专用集成电路(ASIC)。
|
4月前
|
基于FPGA的2FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于FSK调制解调,通过Vivado 2019.2仿真验证了不同信噪比(SNR)下的误码率表现。加入高斯信道与误码统计模块后,仿真结果显示:SNR=16dB时误码极少;随SNR下降至0dB,误码逐渐增多。FSK利用频率变化传输信息,因其易于实现且抗干扰性强,在中低速通信中有广泛应用。2FSK信号由连续谱与离散谱构成,相位连续与否影响功率谱密度衰减特性。Verilog代码实现了FSK调制、加性高斯白噪声信道及解调功能,并计算误码数量。
|
5月前
|
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
免费试用